
index.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

HXTT's HXTT Paradox Packages

Welcome to the HXTT Paradox pages 

You should read carefully License, Introduction, and Components first. If you have JDBC programming 
experience and SQL92 knowledge, you can start easily your project after you know 
com.hxtt.sql.paradox.ParadoxDriver (the suitable JDBC driver class name) and 
jdbc:paradox:///[DatabasePath] (the correct embedded JDBC url) from here. You will get up to date 
information relating to the HXTT Paradox, and look at current documentation from here. For questions 
and general support, you should submit your request at HXTT's technical support site.

License

Introduction

Components

Development Document

Download JDBC3.0 packages, JDBC3.0 demo, JDBC2.0 packages, JDBC2.0 demo, 
JDBC1.2 packages, JDBC1.2 demo, Development Documentation, and so on

Offline Order(Bank Transfer) Online Order

FAQ

Released Version Log

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/ [2008-6-27 12:00:30]

http://www.hxtt.com/support_view_issue.jsp?product=paradox
http://www.hxtt.com/license.html
http://www.hxtt.com/download.jsp?product=paradox
http://www.hxtt.com/download.jsp?product=paradox
http://www.hxtt.com/orderparadox.html
http://www.hxtt.com/orderparadox.html


start.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 1. Quick Start

Index: 

1.  What Is the HXTT Paradox?
2.  Follow Me

What Is the HXTT Paradox?

HXTT Paradox provides a type 4 JDBC driver for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x. It supports JDBC1.2, JDBC2.0, and JDBC3.0. It 
supports Personal Java, JDK1.0.X, JDK1.1.X, JDK1.2.X, JDK1.3.X, JDK1.4.X and JDK1.5.X. It supports JBuilder's Database Pilot, Oracle's JVM, 
JDeveloper 10G, Dreamweaver UltraDev, Dreamweaver ColdFusion, ObJectRelationalBridge, DBVisualizer, iSQL-Viewer, AquaDataStudio, 
Sunopsis, MySQL Migration Toolkit, Tomcat, vqServer, Hibernate, SQuirreL SQL Client, Jisql, and DbEdit Database Utilites for Eclipse Platform. It 
supports transaction, XOPEN SQLState, RMI, Jini, JNDI, and serialization. It supports { UNION | INTERSECT | EXCEPT | MINUS } [ ALL ] query , 
INNER JOIN, FULL JOIN, LEFT JOIN, RIGHT JOIN, NATURAL JOIN, CROSS JOIN, self join, multiple-row VALUES table, PIVOT table, 
UNPIVOT table, and subquery which includes single-row subquery, multirow subquery, multiple-column subquery, inline views, and correlated 
subquery. The current version of the HXTT Paradox packages are available here:

Follow Me

First, you need to download JDK 1.3.X, 1.4.X, or 1.5.X from www.javasoft.com if you use Paradox JDBC 3.0 package(Paradox_JDBC30.jar). You can 
download JDK1.2.X too if you use Paradox JDBC 2.0 package(Paradox_JDBC20.jar). You can download JDK1.1.X too if you use Paradox JDBC 1.2 
package(Paradox_JDBC12.jar). 

Secondly, please add Paradox_JDBC30.jar, Paradox_JDBC20.jar or Paradox_JDBC12.jar to your Java class path, for instance, "SET 
CLASSPATH=c:\javalib\Paradox_JDBC20.jar;%classpath%". You can also use "java -classpath c:\javalib\Paradox_JDBC20.jar yourParadoxclass" to 
run your class. More information about classpath, please read the "Setting the Classpath" topic in file:///yourdriver|/jdk1.2/docs/tooldocs/tools.html . 
You can use "java -classpath c:\javalib\Paradox_JDBC20.jar yourParadoxclass" too.

Thirdly, you can use 'Class.forName("com.hxtt.sql.paradox.ParadoxDriver").newInstance();' or Class.forName("com.hxtt.sql.paradox.ParadoxDriver");' 
to load this driver.

Fourth, if you have used other JDBC driver, you only need to know the correct URL format for DriverManager.getConnection(url,"",""); You can find 
the Paradox URL format below. If you were a Java novice, please read also other Java examples code in Paradox_JDBC30demo.zip, 
Paradox_JDBC20demo.zip or Paradox_JDBC12demo.zip.
Paradox URL format:

http://www.hxtt.com/paradox/start.html (1 / 3) [2008-6-27 12:00:32]

http://www.hxtt.com/download.jsp?product=paradox
http://www.hxtt.com/download.jsp?product=paradox
http://www.hxtt.com/download.jsp?product=paradox


start.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        Embedded:
                jdbc:paradox:[//]/[DatabasePath][?prop1=value1[;prop2=value2]] (You 
can omit that "//" characters sometimes)
                        For example:
                                "jdbc:paradox:/."
                                "jdbc:paradox:/c:/data" for Windows driver
                                "jdbc:paradox:///c:/data" for Windows driver
                                "jdbc:paradox:////usr/data" for unix or linux
                                "jdbc:paradox://///192.168.10.2/sharedir" for UNC 
path
                                "jdbc:paradox:/./data"
        Remote Access (client/server mode):
                jdbc:paradox://host:port/[DatabasePath]
                        For example: "jdbc:paradox://domain.com:3099/c:/data" if one 
ParadoxServer is run on the 3099 port of domain.com
        Compressed Database:(.ZIP, .JAR, .GZ, .TAR, .BZ2, .TGZ, .TAR.GZ, .TAR.BZ2) 
                jdbc url format is the same as embedded url and remote url.
                        For example:
                                "jdbc:paradox:/c:/test/testparadox.zip
        Memory-only Database:
                jdbc:paradox:/_memory_/
        URL Database:(http protocol, https protocol, ftp protocol)
                jdbc:paradox:http://httpURL
                jdbc:paradox:https://httpsURL
                jdbc:paradox:ftp://ftpURL
                        For example:
                                "jdbc:paradox:http://www.hxtt.com/test"
        SAMBA Database:(smb protocol)
                
jdbc:paradox:smb://[[[domain;]username[:password]@]server[:port]/[[share/[dir/]file]]][?[param=value]]
                        For example:
                                
"jdbc:paradox:smb://test1:123@100.100.13.94/paradoxfiles".zone"
        Free JDBC url:(Warning: only use it for special project)
                jdbc:paradox:/" or "jdbc:paradox:///". Then you can use some full UNC 
path names in SQL to visit anywhere where your Java VM has right to access.
                        For instance:
                                select * from \\amd2500\e$\paradoxfiles\test;
                                elect * from "\\amd2500\d$\paradoxiles".test;
                                select * from ".".test;

http://www.hxtt.com/paradox/start.html (2 / 3) [2008-6-27 12:00:32]



start.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

         HXTT Paradox supports seamlessly data mining on memory-only table, physical 
table, url table, compressed table, SAMBA table in a sql. More details
         is in Advanced Programming chapter.

Last, Paradox driver is a standard JDBC driver so that you will find most of valuable information at file:///yourdrive|/jdk1.2/docs/api/java/sql/package-
frame.html . 

Paradox supports SQL-92. It supports { UNION | INTERSECT | EXCEPT | MINUS } [ ALL ] query , INNER JOIN, FULL JOIN, LEFT JOIN, RIGHT 
JOIN, NATURAL JOIN, CROSS JOIN, self join, and subquery which includes single-row subquery, multirow subquery, multiple-column subquery, 
inline views, and correlated subquery. The major syntax is listed at here.

Paradox driver will use index to speed up the query which contains some indexed expressions. Paradox supports utilizing index file for LIKE, 
BETWEEN, IN, DISTINCT, ORDER, and some OR operations. 

 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/start.html (3 / 3) [2008-6-27 12:00:32]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 6. SQL Syntax

Index: 

1.  Select
2.  Insert
3.  Update
4.  Delete
5.  CREATE CATALOG
6.  CREATE TABLE
7.  DROP TABLE
8.  ALTER TABLE
9.  TRUNCATE TABLE

10.  PACK TABLE
11.  RENAME TABLE
12.  LOCK TABLE
13.  UNLOCK TABLE
14.  CREATE INDEX
15.  DROP INDEX
16.  REINDEX
17.  CREATE SEQUENCE
18.  DROP SEQUENCE
19.  ALTER SEQUENCE
20.  SET TRANSACTION
21.  START TRANSACTION
22.  COMMIT
23.  ROLLBACK
24.  SAVEPOINT
25.  RELEASE SAVEPOINT
26.  Call Procedure
27.  Declare Variable
28.  SET Variable
29.  Comment Syntax
30.  SQL States

Use ";" to separate multi sql statements. For instance, "insert into test (int1) values(1);insert into test 
(int1) values(2);". "reserved word", [reserved word] or {v 'reserved word'} is used to quote a column 
with reserved word name in SQL statement, for instance, 'select {v 'RIGHT'},'other' from states where {v 
'RIGHT'}=32. The HXTT Paradox supports using DATE, TIME, TIMESTAMP, GROUP, ORDER, 

http://www.hxtt.com/paradox/sqlsyntax.html (1 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

KEY, DESC, SEQUENCE, INCREMENT, MINVALUE, MAXVALUE, CACHE, CHECK, CYCLE, 
OTHER, SET, INT, UNIQUE, LEVEL, RELEASE, INDEX, TOP, PACK, CALL, CONNECT, and 
UPDATE directly in SQL, although they're reserved words too.

SELECT [ALL | DISTINCT [ ON ( expression [, ...] ) ] ] | DISTINCTROW [TOP n [PERCENT]] 
select_list [INTO variable [, ...] ] FROM table_reference_list [WHERE condition_expression] 
[group_by_clause] [HAVING condition_expression] [union_clause] [order_by_clause] [FOR UPDATE]

select_list: { expression [ [AS] columnAlias] | table.* | * } [,...]

table_reference_list: {table_reference | table_join} [,...]

table_reference: { { table_name | subquery | (table_join) | (VALUES expression[, ...] ) AS 
tableName(columnName[,...])} [ [AS] tableAlias] } [pivot_clause] [unpivot_clause]

table_name: { [catalog.]tableName} | {UNC path}

table_join: table_reference join_clause [join_clause,...]

join_clause: [NATURAL] { INNER | { [ LEFT | RIGHT | FULL] [OUTER] } } JOIN table_reference [ 
ON condition_expression | USING(column1,column2,...) ]

condition_expression: an expression which should return a boolean value.

pivot_clause: PIVOT ( aggregate_function(value_column) FOR pivot_column IN (column_list) ) [AS] 
tableAlias

unpivot_clause: UNPIVOT ( value_column FOR pivot_column IN (column_list) ) [AS] tableAlias

group_by_clause: GROUP BY expression [,...]

union_clause: { UNION | INTERSECT | EXCEPT | MINUS } [ ALL ] select_statement [ union_clause 
...]

order_by_clause: ORDER BY expression [ASC|DESC] [,...]

_rowid_, is a virtual column as primary key.

DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each corresponding 
select_list column has the same value. DISTINCT has no effect on constant, and _rowid_. For instance, 
"select distinct 'First Name',name,age from users". 'First Name' will be ignored since it's a constant.

http://www.hxtt.com/paradox/sqlsyntax.html (2 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

expression: a complicated expression which can include parentheses, logical operator(NOT, AND, OR), 
positives/minus sign(+, -), arithmetical operator(+,-,*,/,%), string operator(|| (left string concat right 
string), +(left string concat right string), -(trim left string then concat rightstring), $(check whether left 
string is contained in right string), condition operator(>,>=,=,==,<=,<,!=,<>), [NOT] LIKE value 
{escape 'escape_character'},[NOT] ILIKE value {escape 'escape_character'}, IS [NOT] NULL, 
BETWEEN ... AND ..., [NOT] IN, [NOT] EXISTS, [ALL|ANY|SOME] (subquery), [NOT] CASE 
WHEN expr THEN result [WHEN expr THEN result ...] [ELSE expr] END, CASE expr WHEN 
compare_expr THEN result [WHEN compare_expr THEN result ...] [ELSE result] END, SQL Escape 
Syntax({d 'yyyy-mm-dd'}, {t 'hh:mm:ss'}, {ts 'yyyy-mm-dd hh:mm:ss.f...'},{v 'reserved_word'}, {fn 
functionExpression}, {escape 'oneEcapeCharacter'}, {"varbinary" 'string'}), function(more than 200), 
aggregate function(MAX, MIN, AVG, COUNT, SUM, STD, STDDEV), constant(null, true, false, 
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, date, time, timestamp, number, 
string), column, parameter(?), subquery(single-row subquery, multirow subquery, multiple-column 
subquery, inline views, correlated subquery) and so on.

"SELECT select_list" can be used to get some calculated values through an one-row ResultSet. Column 
can be used in all sql except for "SELECT select_list". Parameter(?) can only be used in 
PreparedStatement.

For instance:

select val('123.222')
select CONVERT('123',SQL_INTEGER) as a,TTOC({d '1999-10-10'},1) as b, 
IFNULL(1,33) as c, 123 in(456,123,789,'abc') as d, EXTRACT(DECADE FROM '2001-
02-16 20:38:40'), '88'+IIF(3<6,'1','0')
select encode('adsdfsdf');
select decode(encode('adsdfsdf'))+'';
SELECT top 8 percent * FROM data.sz9010;
select distinct top 10 * from test where not deleted() order by int1,char1 desc;
select int1,float1 from test where int1>0 group by int1,double1;
select distinct on (int1) int1,double1 from test;
select sum(int1),max(dec1),min(double1) from test;
SELECT SUM(apmast.fnamount), 
SUM(glcshi.fnadjamt),SUM(glcshi.fncashamt),SUM(glcshi.fndiscount) FROM apmast, 
glcshi WHERE apmast.fcinvoice +apmast.fvendno = glcshi.fcinvoice + glcshi.fcnameid 
AND apmast.fduedate between {d '1999-01-01'} AND {d '1999-11-30'} AND 
apmast.finvdate <= {d '1999-11-30'};
SELECT cellID, columnID, reference, function, parameter FROM repLayout WHERE 
reportID = '1' AND rowID = 0 ORDER BY columnID;
select distinct int1,double1 from test group by int1,double1,float1;
select distinct * from test where int1>0
select distinct int1,count(*),sum(int1) from brain.user group by int1

http://www.hxtt.com/paradox/sqlsyntax.html (3 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

SELECT date1,time1,int1 FROM test where 
TIMESTAMPdIFF(SQL_TSI_YEAR,time1,{ts '3999-03-24 00:59:23.22222'})<-2000 and 
date1>{d '1900-01-01'} and date1>{d '1960-01-01'} and date1<{d '2000-01-02'}+20;
select int1 as a,c+23 as b,a+b as c from test where a=1;
SELECT INT1,FLOAT1,A.* FROM TEST A WHERE {fn abs(-TEST.INT1)}>0 or 
a.float1<0 order by int1 asc,currency1,double1*5+int1 desc;
select int1,count(*),sum(int1+count(*)),sum(int1)+int1 from test group by int1 having 
int1>10;
SELECT SCHOOLNUM, STULINK,CHGNUMBER, {v 'ABSEN$0101'}, {v 
'ABSEN$0102'}, USERSTAMP, DATESTAMP, {v 'TIMESTAMP'},SEQUENCE FROM 
AATD2019 where {v 'ABSEN$0101'}='1234' ORDER BY SCHOOLNUM, STULINK, 
SEQUENCE;
select char1,char1 like 'Z%',char1 in('ZZAA','Z'),char1 between 'A' and 'ZZZ',char1 
in('ZZAA','Z') or char1 between 'A' and 'Z',* from test where char1='Z';
select int1 from test where int1=(select distinct top 1 int1 from test where int1>0);
select int1 from test where int1 in(select int1 from test where not deleted());
select recno(),int1 from test where (recno(),int1) in(select top 2 recno(),int1 from test 
where int1>0);
select subquery.int1,recno('subquery') from (select top 2 recno(),int1 from test where 
int1>0) as subquery;
select subquery.int1,recno('test'),test.int1,recno('subquery') from (select top 2 recno(),int1 
from test where int1>0) as subquery, test where test.int1=subquery.int1;
ELECT INT1 FROM test as a WHERE EXISTS(SELECT 1 FROM test WHERE int1 >0);
SELECT INT1 FROM test as a WHERE int1>=all(SELECT int1 FROM test);
SELECT INT1 FROM test as a WHERE int1>=any(SELECT int1 FROM test);
SELECT INT1 FROM test as a WHERE int1>=some(SELECT int1 FROM test);
select int1,recno() from test where (int1,recno())>(3,5);
select int1,recno() from test where (recno(),int1)=(6,222);
SELECT * FROM (SELECT * FROM test WHERE int1 = 222 ) as a WHERE 
EXISTS(SELECT 1 FROM test WHERE int1 >0);
select recno('a'),recno('b'),a.int1,a.char1,b.int1,b.char1 from test a, test as b where 
recno('a')=recno('b');
select a.int1,a.char1,b.int1,b.char1 from test a inner join test as b on a.int1=b.int1;
select a.int1,a.char1,b.int1,b.char1 from test a NATURAL inner join test as b on 
a.int1=b.int1;
select recno('a'),recno('b'),a.int1,a.char1,b.int1,b.char1 from test a left join test as b on 
a.int1=b.int1;
select a.int1,a.char1,b.int1,b.char1 from test a right join test as b on a.int1=b.int1;
select a.int1,a.char1,b.int1,b.char1 from test a full join test as b on a.int1=b.int1;
select recno('a'),recno('b'),a.int1,a.char1,b.int1,b.char1 from test a full join test as b on 
a.int1==b.int1 and recno('a')!=recno('b');
SELECT * FROM test a LEFT JOIN (test b JOIN test c ON (b.int1 = c.int1)) as d ON 
(a.int1 = d.int1);

http://www.hxtt.com/paradox/sqlsyntax.html (4 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

SELECT * FROM test a,test b,test c WHERE a.int1 = b.int1 AND b.int1 = c.int1;
SELECT * FROM test a NATURAL CROSS JOIN test b CROSS JOIN test c WHERE 
a.int1 = b.int1 AND b.int1 = c.int1;
SELECT * FROM test a LEFT JOIN (test b JOIN test c ON (b.int1 = c.int1)) on 
recno('a')=recno(2);
SELECT int1 FROM test where int1>0 UNION ALL select int1 from test where 
int1>3000 order by int1 desc
SELECT int1,* FROM test where int1>0 UNION select int1,* from test where int1>3000 
order by int1
ELECT int1,* FROM test where int1>0 INTERSECT all select int1,* from test where 
int1>3000 order by int1;
SELECT int1,* FROM test where int1>0 EXCEPT select int1,* from test where int1>3000 
order by int1 descl
SELECT int1,* FROM test where int1>0 MINUS select int1,* from test where int1>3000 
order by int1,double1 desc;
select double1,sum(double1),int1 from test where int1>0 group by int1 having 
sum(double1)>0 and double1>0;
select distinct 1,a.int1,sum(a.int1) from test as a,test as b group by a.int1,B.int1
select a.int1,a.char1,b.int1,b.char1 from test a NATURAL inner join test as b

INSERT INTO table_name [ ( column_identifier [,...] ) ] { VALUES ( expression [, ...] ) | VALUES 
expression [, ...] | VALUES ( expression [, ...] ),... | SELECT query | ? }

column_identifier = columnName | "reserved_word" | {v 'reserved_word'} 

Adds one or more new rows of data into a table. SQL does't permit that table1 is the same table as table2 
when INSERT INTO table1 select * from table2, but the HXTT Paradox support such an unadvisable 
operation, for example, INSERT INTO test (INT1,DATE1) select distinct int1,date1 from test.

For instance:

INSERT INTO test (INT1,dec1,time1) VALUES(-1999,-222.33333,{ts '1333-11-30 
22:22:22.999999999'});
INSERT INTO test ("INT1","DATE1") VALUES(1999.0111,{d '1996-10-21'});
INSERT INTO test ("INT1","DATE1") VALUES(1999.0111,{d '1996-10-21'}),(333,{d 
'2006-10-21'});
INSERT INTO test ("INT1") VALUES 1999.0111,333;
insert into ecode values('Maciej', 'Kowalski');
insert into test values (reccount()+1,'abc',date(),{ts '2003-12-18 19:42:17.88'});
INSERT INTO AATD2019 ({v 'ABSEN$0101'}) values('1234');
insert into test select * from test order by int1 asc;
insert into test select * from test order by int1 asc;

http://www.hxtt.com/paradox/sqlsyntax.html (5 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

UPDATE table_name SET column_identifier = expression [,...] [WHERE condition_expression]

For instance:

update test set int1=null where SequenceID=26;
update test set INT1=323232,DEC1=-DEC1 where FLOAT1=3.00 and INT1=222 and 
DEC1=3.00 and DOUBLE1=34.0 and TIME1 is NULL and CHAR1='ZZAA' and 
CURRENCY1=0 and BOOLEAN1 is NULL
update AATD2019 set {v 'ABSEN$0101'}='1234' where SequenceID=1;
update test set int1=3333555 where exists(SELECT 1 FROM test WHERE int1 = 222 ) 
and SequenceID=3;

DELETE FROM table_name [WHERE condition_expression]

Removes rows in a table according to condition_expression. 

For instance:

delete from test where SequenceID=4; 

CREATE CATALOG [IF NOT EXISTS] catalogName

Create a subdirectory to contain database files.

For instance:

create catalog if not exists data222; 

CREATE TABLE [IF NOT EXISTS] table_name [(column_identifier data_type [constraint] [,...]) 
[,AUTO_INCREMENT] [, PRIMARY KEY ( column [,...] )] ] [ [AS] SELECT query | ? ]

data_type: CHAR(n) | CHARACTER(n) | VARCHAR(n) | BINARY (n) | VARBINARY (n) | 
NUMERIC(n1[,n2]) | DEC[IMAL](n1[,n2]) | INT[EGER] | SMALLINT | FLOAT [(n)] | REAL | 
DOUBLE | BIT | BOOLEAN | DATE [(dateFormat)] | TIME [(dateFormat)] | TIMESTAMP 
[(dateFormat)] | LONGVARCHAR [(n)] | LONGVARBINARY [(n)] | JAVA_OBJECT [(n)] | CLOB | 
BLOB| OTHER(type_name [,n]) 

n, n1,n2: positive integer, n2 can be 0

constraint: [NULL| NOT NULL] [UNIQUE] [DEFAULT expression] [PRIMARY KEY]

http://www.hxtt.com/paradox/sqlsyntax.html (6 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

The HXTT Paradox will ignore DEFAULT expression and (dateFormat) for Paradox's compatibility. 
Column can store null values, so that constraint NOT NULL is ignored. Although CREATE INDEX can 
create UNIQUE and PRIMARY KEY for existent table, the preferable way is using UNIQUE and 
PRIMARY KEY in CREATE TABLE.

SQL Data Types for Create Table

SQL Type  Paradox Data Type Size in 
table

SQL Syntax Java Type  

CHARACTER  Unavailing
1~2

CHAR[ACTER] char

CHAR  
Character field of 

width n (Alpha 'A') 1~255
CHAR[ACTER] (n) String

VARCHAR  
Character field of 

width n (Alpha 'A') 1~255
VARCHAR (n) String

LONGVARCHAR 

Memo BLOb 'M'

Formatted Memo 
BLOb 'F'

LONGVARCHAR 
(n)

String, char[], 
java.sql.CLOB  

NUMERIC  Numeric field of width 
n with d decimal 
places (BCD '#')

1~255
NUMERIC [(n[,d])] java.math.BigDecimal  

DECIMAL  
Floating numeric field 
of  width n with d 
decimal places (BCD 
'#')

1~255
DEC[IMAL] [(n[,d])] java.math.BigDecimal  

BIT  Logical 'L'
1

BIT boolean  

TINYINT  
Unavailing, map 
TINYINT into 
SMALLINT 

  TINYINT byte  

http://www.hxtt.com/paradox/sqlsyntax.html (7 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

SMALLINT  
Short integer 'S' 2 SMALLINT

short  

INTEGER  
Long integer 'I'

Autoincrement '+'
4

INT[EGER] int  

BIGINT  
Unavailing, map 

BIGINT into 
NUMERIC(17,0) 

  BIGINT long  

REAL  
Unavailing, map 

REAL into FLOAT 
  REAL float  

FLOAT  Number 'N'
8

FLOAT [(d)] double  

DOUBLE  Number 'N'
8

DOUBLE double  

BINARY  Bytes 'Y'
n

BINARY (n) byte[]  

VARBINARY  Bytes 'Y'
n

VARBINARY (n) byte[]

LONGVARBINARY  
Binary Large Object 

'B' LONGVARBINARY 
(n)

byte[], java.sql.BLOB  

DATE  
Date 'D' 4 DATE

java.sql.Date  

TIME  Time 'T'
4

TIME java.sql.Time  

TIMESTAMP  Timestamp '@'
8

TIMESTAMP java.sql.Timestamp  

BOOLEAN Logical 'L'
1

BOOLEAN boolean 

BLOB 
Binary Large Object 

'B'
BLOB 

byte[], java.sql.BLOB, 
Object 

http://www.hxtt.com/paradox/sqlsyntax.html (8 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

CLOB 

Memo BLOb 'M'

Formatted Memo 
BLOb 'F'

CLOB 
String, char[], 
java.sql.CLOB

OTHER 

Currency '$'

Graphic BLOb 'G'

OLE 'O'

8

 

 

OTHER (Currency)

OTHER (Graphics,n)

OTHER (OLE,n)

java.math.BigDecimal

byte[]

byte[]

JAVA_OBJECT 
Binary Large Object 

'B'
JAVA_OBJECT byte[] or Object 

For instance:

create table if not exists test(TAlpha varchar(25),TNumber double,TMoney OTHER 
(currency),TShort smallint,TLongInt int,TBCD numeric(20,4),TDate date,TTime 
time,TTimeStamp timestamp, TMemo longvarchar(10), TFormatedMemo 
longvarchar(5),TGraphic OTHER (graphics,10), TOle OTHER (ole,10), TLogical 
boolean,TAutoIncrement int,TBinary longvarbinary(10),TBytes varbinary(25),TCalc 
double);
create table if not exists test (short1 smallint, int1 int,double1 double,number1 
numeric(20,4),boolean1 boolean, currency1 OTHER (currency),char1 varchar(25),bytes 
varbinary(20), date1 date, time1 time,timestamp1 timestamp, clob1 longvarchar,blob1 
longvarbinary,ole1 java_object,graphics OTHER (graphics));
create table if not exists test(LineID int ,SequenceID int,LineText varchar(40));
create table if not exists test(LineID int PRIMARY KEY,SequenceID int,LineText 
varchar(40));
create table if not exists test(SequenceID int,LineText varchar(40),LineID int PRIMARY 
KEY);
create table if not exists test(SequenceID int unique,LineText varchar(40),LineID int, 
PRIMARY KEY (LineID));
create table customer1 (CustNo int, "Last Name" varchar(30),"First Name" varchar(30), 
"VIP Status" varchar(10), Address1 varchar(40), Address2 varchar(40), City varchar(20), 
"State/Prov" varchar(10),"Post Code" varchar(10),Country varchar(10), Phone 
varchar(18),Fax varchar(18), EMail varchar(40), Remarks longvarchar(180));

DROP TABLE [IF EXISTS] table_name

http://www.hxtt.com/paradox/sqlsyntax.html (9 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Removes a table, and its indexes from the database. IF that table doesn't exist without using IF EXIST, 
an SQLException will be thrown.

For instance:

drop table if exists states; 

ALTER TABLE table_name alter_specification [,...]

alter_specification: {{ADD|MODIFY} column_identifier data_type [constraint]}| DROP 
column_identifier | RENAME column_identifier 1 TO column_identifier 2 | RENAME TO table_name2

When some alter operations are in one ALTER sql, the HXTT Paradox will complete all RENAME 
column operations first, then do all ADD, MODIFY, AND DROP column operations at one time, and 
RENAME table is the last operation.

For instance:

alter table test rename int11 to int1;
alter table test rename int1 to int2, rename to test22;
alter table test22 rename to test;
alter table test add column1 int DEFAULT 3 NULL, drop clob1, modify double1 int;

TRUNCATE TABLE [IF EXISTS] table_name 

Remove all table rows.

For instance:

truncate table test; 

PACK TABLE [IF EXISTS] table_name 

pack the table.

For instance:

pack table test; 

RENAME TABLE table_name TO table_name2

http://www.hxtt.com/paradox/sqlsyntax.html (10 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Rename the table.

For instance:

RENAME table test to test1; 

LOCK TABLE table_name 

lock the table. Returns 1 if sucess, 0 if failed to lock a table.

For instance:

lock table test; 

UNLOCK TABLE table_name 

unlock the table. Returns 1 if sucess, 0 if failed to unlock a table.

For instance:

unlock table test; 

CREATE [UNIQUE] INDEX [IF NOT EXISTS] indexName[(keylength)][,...] [OF indexFileName] ON 
tableName (expression [UNIQUE] [PRIMARY KEY] [ASC|DESC] [FOR expression][,...])

Create an index file which can contains one or more index expressions for a table. The HXTT Paradox 
will utilize index when condition_expression contains indexed expression.

[OF indexFileName] and [FOR expression] will be ingored for Paradox's compatibility. Paradox only 
supports column level index, so that you can't index complicated expression except for composite index 
(column1,column2[,column3...]). Although CREATE INDEX can create UNIQUE and PRIMARY KEY 
for existent table, the preferable way is using UNIQUE and PRIMARY KEY in CREATE TABLE. 
Paradox has some limitations on PRIMARY KEY columns, so your correct CREATE INDEX sql as 
PRIMARY KEY columns for existent table maybe throws exception for Paradox's compatibility. 
UNIQUE column and composite index can be added by CREATE INDEX anytime, but Paradox requires 
existent PRIMARY KEY for UNIQUE column and composite index.

For instance:

create table if not exists test(LineID int ,SequenceID int,LineText varchar(40));
create index LineID,SequenceID,Line on test (LineID PRIMARY KEY,SequenceID 

http://www.hxtt.com/paradox/sqlsyntax.html (11 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

UNIQUE, (SequenceID,LineText));
create table customer1 (CustNo int, "Last Name" varchar(30),"First Name" varchar(30), 
"VIP Status" varchar(10), Address1 varchar(40), Address2 varchar(40), City varchar(20), 
"State/Prov" varchar(10),"Post Code" varchar(10),Country varchar(10), Phone 
varchar(18),Fax varchar(18), EMail varchar(40), Remarks longvarchar(180));
create index CustNo,Names,City on customer1 (CustNo primary key,("Last Name","First 
Name"),City);

DROP INDEX [IF EXISTS] {ALL | indexName[,...]} [of indexFileName] ON table_name

Removes the specified index from the database.

For instance:

drop index all on test;
drop index IF EXISTS all of customer1.X01 on customer1;

REINDEX {ALL | indexFileName[,...]} ON table_name

Rebuild the specified index.

For instance:

reindex all on test;
reindex test.px on test;
reindex test.x01 on test;

CREATE SEQUENCE [IF NOT EXISTS] sequence_name [AS {INT|SMALLINT|TINYINT|BIGINT}] 
[START [WITH] n] [INCREMENT [BY] n] [MINVALUE n | NO MINVALUE] [ MAXVALUE n | NO 
MAXVALUE ] [ CACHE n | NO CACHE] [ [ NO ] CYCLE ]

sequence_name: [catalog.]sequenceName 

The optional clause START WITH n allows the sequence to begin anywhere. The default starting value 
is minvalue for ascending sequences and maxvalue for descending ones. The optional clause 
INCREMENT BY n specifies which value is added to the current sequence value to create a new value. 
A positive value will make an ascending sequence, a negative one a descending sequence. The default 
value is 1. The optional clause MINVALUE n determines the minimum value a sequence can generate. If 
this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1 
and -128(-32768,0x80000000,0x8000000000000000L) for ascending and descending sequences, 
respectively. The optional clause MAXVALUE n determines the maximum value for the sequence. If 
this clause is not supplied or NO MAXVALUE is specified, then default values will be used. The 

http://www.hxtt.com/paradox/sqlsyntax.html (12 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

defaults are 127(32767,0x7fffffff,0x7fffffffffffffffL)and -1 for ascending and descending sequences, 
respectively. The optional clause CACHE cache specifies how many sequence numbers are to be 
preallocated and stored in memory for faster access. The minimum value is 1 (only one value can be 
generated at a time, i.e., no cache), and this is also the default. The maximum value for cache is 65535. 
The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been 
reached by an ascending or descending sequence respectively. If the limit is reached, the next number 
generated will be the minvalue or maxvalue, respectively. If NO CYCLE is specified, any calls to 
nextval after the sequence has reached its maximum value will throw an exception. If neither CYCLE or 
NO CYCLE are specified, NO CYCLE is the default.

For instance:

create sequence if not exists userID start WITH 100 increment by 2 maxvalue 2000 cache 
5 cycle;

DROP SEQUENCE [IF EXISTS] sequence_name

Removes a sequence from the database. IF that sequence doesn't exist without using IF EXIST, an 
SQLException will be thrown.

For instance:

drop sequence if exists userID;

ALTER SEQUENCE sequence_name [AS {INT|SMALLINT|TINYINT|BIGINT}] [RESTART [WITH] 
n] [INCREMENT [BY] n] [MINVALUE n | NO MINVALUE] [ MAXVALUE n | NO MAXVALUE ] [ 
CACHE n | NO CACHE] [ [ NO ] CYCLE ]

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameter not 
specifically set in the ALTER SEQUENCE command retains its prior setting.

For instance:

alter sequence userID restart WITH 100 increment by 1 maxvalue 5000;

SET TRANSACTION transaction_mode [, ...]

transaction_mode: { ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED | 
REPEATABLE READ | SERIALIZABLE } | { READ WRITE | READ ONLY }

Sets the transaction characteristics of the current transaction. It effects any subsequent transactions in the 

http://www.hxtt.com/paradox/sqlsyntax.html (13 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

same connection. java.sql.Connection.setTransactionIsolation(int level) and 
java.sql.Connection.setReadOnly(boolean readOnly) can do the same task.

For instance:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

START TRANSACTION [ transaction_mode [, ...] ]

Begins a new transaction block. java.sql.Connection.setAutoCommit(false), 
java.sql.Connection.setTransactionIsolation(int level), and java.sql.Connection.setReadOnly(boolean 
readOnly) can do the same task.

For instance:

START TRANSACTION;

COMMIT [WORK]

Terminates the current transaction and makes all changes under the transaction persistent. It commits the 
changes to the database. java.sql.Connection.commit() can do the same task.

For instance:

commit;

ROLLBACK [WORK] [ TO [ SAVEPOINT ] savepoint_name]

Without savepoint_name, terminates the current transaction and rescinds all changes made under the 
transaction. It rolls back the changes to the database. With savepoint_name, rolls back all commands that 
were executed after the savepoint was established. java.sql.Connection.rollback() can do the same task of 
ROLLBACK [WORK] sql.

For instance:

rollback;

SAVEPOINT savepoint_name

SAVEPOINT establishes a new savepoint within the current transaction. 
java.sql.Connection.setSavepoint(String name) and java.sql.Connection.setSavepoint() can do the same 

http://www.hxtt.com/paradox/sqlsyntax.html (14 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

task.

For instance:

savepoint t1;

RELEASE SAVEPOINT savepoint_name

Destroys a savepoint previously defined in the current transaction. 
java.sql.Connection.releaseSavepoint(Savepoint savepoint) can do the same task.

{ [ ? = ] call procedure_name [ ( ? [, ? [ , ... ]] ) ] }

Now only HXTT Access supports stored procedure.

For instance:

release savepoint t1;

DECLARE variable_name[,...] type [DEFAULT expression]

Variable is visiable only in the same connection.

For instance:

DECLARE abc CHAR(20) DEFAULT 'Hello';
DECLARE x, y INT;

SET variable_name = expression [,...]

expression can be a complicated expresion. BTW, INTO variable[,...] clause of SELECT syntax can set 
selected columns directly into variables. SELECT id,data INTO x,y FROM test.t1 LIMIT 1;

For instance:

SET x = 1+int(55.5),y=2;
SELECT name,id INTO x,y FROM table1 WHERE id=33;
SELECT date(),pi() INTO x,y;

Comment Syntax

http://www.hxtt.com/paradox/sqlsyntax.html (15 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

#one-line comment
--one-line comment
/*multiline comment*/

For instance:

select * /* column list */ from test;#This is a select sql.

SQL States

SQL State Description

01001 Cursor operation conflict

01427 single-row subquery returns more than one row

01428 single-column subquery returns more than one column

01429 subquery returns mismatch column number

01430 single-row subquery returns none row

07006 Restricted data type attribute violation

08000 Connection exception

08003 Connection not open

08007 Connection failure during transaction

08S01 Remote database access failure

0A000 Feature not supported

0A001 Multiple server transactions

21S01 Insert value list does not match column list

22000 Data exception

22019 Invalid escape character

22023 Invalid parameter value

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Invalid transaction state

26000 Invalid SQL statement name

2A000 Direct SQL syntax error or access rule violation

2D000 Invalid transaction termination

2E000 Invalid connection name

http://www.hxtt.com/paradox/sqlsyntax.html (16 / 17) [2008-6-27 12:00:36]



sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

34000 Invalid cursor name

34102 Invalid variable name

34103 Invalid funciton name

34104 Invalid index file name

3C000 Duplicate cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40000 Transaction rollback

42000 Syntax error or access violation

42001 Syntax error

42002 Access violation

42003 Statement has been closed

60000 System errors

99999 Catch all others

C0100 Unknown CodePageID

C0101 Unknown File Format

C0102 Unknown Table Version

C0103 Unknown Index Version

C0104 Corrupt Index File

C0105 Invalid Record Number

C0106 Convert dirty data into null value

S0001 Base table or view already exists

S0021 Index already exists

S0022 Column not found

S1002 Invalid column number

S1009 Invalid Argument value

S1T00 Timeout expired

 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/sqlsyntax.html (17 / 17) [2008-6-27 12:00:36]



introduction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Introduction of HXTT Paradox Packages

HXTT Paradox contains the only type 4 JDBC(1.2, 2.0, 3.0) driver packages for Paradox version from 
3.0, 3.5, 4.x, 5.x, 7.x to 11.x, which supports transaction, embedded access, client/server mode, and 
remote access(map network drive, SAMBA protocol, HTTP protocol, HTTPS protocol, FTP protocol, 
and UNC path). 

Registration benefits:

●     Full version of HXTT Paradox without limitations
●     Free technical support by forum and email
●     Free online major and minor updates in the guarantee period

Trial version is for your evaluation only. If you want to use HXTT Paradox after a trial period, you have 
to purchase a licensed copy from HXTT.

NOTE:
Differences between the trial version and the licensed version: 

●     The trial version of the driver is available to use free for a 30-day trial period.
●     The trial version of the driver allows executing not more than 50 queries once.
●     SELECT queries return the first 1000 rows in the result set.

Our Other JDBC Products

HXTT DBF - JDBC(1.2, 2.0, 3.0) driver packages for Xbase database (dbase, Visual DBASE, SIx 
Driver, SoftC, Codebase, Clipper, Foxbase, Foxpro, VFP, xHarbour, Halcyon, Apollo, Goldmine, and 
BDE)

HXTT Access - JDBC(1.2, 2.0, 3.0) driver packages for Microsoft Access version from 95, 97, 2000, 
XP, 2002, to 2003

HXTT Text (CSV) - JDBC(1.2, 2.0, 3.0) driver packages for raw data, flat text , CSV file, TSV file, PSV 
file, fixed-length, and variable-length binary file

HXTT Excel - JDBC(1.2, 2.0, 3.0) driver packages for Microsoft Excel version from 95, 97, 98, 2000, 
2001, 2002, 2003, to 2004.

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/introduction.html [2008-6-27 12:00:39]

http://www.hxtt.com/orderparadox.html
http://www.hxtt.com/products.html#jdbc
http://www.hxtt.com/dbf.html
http://www.hxtt.com/access.html
http://www.hxtt.com/text.html
http://www.hxtt.com/excel.html


components.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Components of HXTT Paradox Packages

These components are included in the HXTT Paradox license descriptions :

Component Description

Paradox Documentation Development Documentation

Paradox JDBC 1.2 Package
JDBC 1.2 and Personal Java compliant driver, and a Database 
GUI manager for swing1.0.3.

Paradox JDBC 1.2 Embedded 
Package

JDBC 1.2 and Personal Java compliant driver without 
client/server mode support.

Paradox JDBC 1.2 Remote Access 
Package

The client side JDBC 1.2 and Personal Java compliant ultra light 
applet driver

Paradox JDBC 1.2 Driver's Demo Demo Code for JDBC 1.2

Paradox JDBC 2.0 Package JDBC 2.0 compliant driver, and a Database GUI manager.

Paradox JDBC 2.0 Embedded 
Package

JDBC 2.0 compliant driver without client/server mode support.

Paradox JDBC 2.0 Remote Access 
Package

The client side JDBC 2.0 compliant ultra light applet driver

Paradox JDBC 2.0 Driver's Demo Demo Code for JDBC 2.0

Paradox JDBC 3.0 Package JDBC 3.0 compliant driver, and a Database GUI manager.

Paradox JDBC 3.0 Embedded 
Package

JDBC 3.0 compliant driver without client/server mode support.

Paradox JDBC 3.0 Remote Access 
Package

The client side JDBC 3.0 compliant ultra light applet driver

Paradox JDBC 3.0 Driver's Demo Demo Code for JDBC 3.0
HXTT JDBC 3.0 Common Package 
and Paradox JDBC 3.0 Core Package

You can use common package if you employ more than one of 
HXTT JDBC products.

 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/components.html [2008-6-27 12:00:40]



document.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

HXTT's JDBC Packages Documentation

Welcome to the HXTT Paradox v3.1 Documentation 

Current documentation can be found here. This documentation is not intended as a complete guide to 
JDBC programming, but should help to get you started. For more information, refer to the standard 
JDBC API documentation(supplied with Sun's JDK). Also, take a look at the examples included with the 
HXTT Paradox packages. The basic example is used here. 

Index: 

Chapter 1. Quick Start

1.  What Is the HXTT Paradox?
2.  Follow Me

Chapter 2. Installation

1.  System Requirements
2.  Setting the CLASSPATH 
3.  Loading the Driver
4.  Connecting to the Database

Chapter 3. Statement

1.  Creating a Statement Instance
2.  Issuing a Query 
3.  Performing Updates
4.  Creating and Modifying Database Objects

Chapter 4. ResultSet

1.  ResultSet Overview
2.  Providing Performance Hints
3.  Performing Updates
4.  Serializing ResultSet

http://www.hxtt.com/paradox/document.html (1 / 4) [2008-6-27 12:00:42]



document.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 5. Advanced Programming

1.  Sending Very Large IN Parameters
2.  Set Record Lock Manually
3.  Table Level Encryption
4.  Bulk Insert
5.  Bulk Insert A ResultSet from any JDBC driver
6.  Transaction Processing
7.  RowSet
8.  PooledConnection
9.  SSL Connection

10.  Run HXTT ParadoxServer as Windows Service or Linux(Solaris) Daemon
11.  DBAdmin (A GUI Dtabase Server Manager)
12.  How to Use Memory-only Table, Physical Table, Url table, Compressed table, SAMBA table in a 

SQL.
13.  Create Table from any java.io.InputStream object.

Chapter 6. SQL Syntax

1.  Select
2.  Insert
3.  Update
4.  Delete
5.  CREATE CATALOG
6.  CREATE TABLE
7.  DROP TABLE
8.  ALTER TABLE
9.  TRUNCATE TABLE

10.  PACK TABLE
11.  RENAME TABLE
12.  LOCK TABLE
13.  UNLOCK TABLE
14.  CREATE INDEX
15.  DROP INDEX
16.  REINDEX
17.  CREATE SEQUENCE
18.  DROP SEQUENCE
19.  ALTER SEQUENCE

http://www.hxtt.com/paradox/document.html (2 / 4) [2008-6-27 12:00:42]



document.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

20.  SET TRANSACTION
21.  START TRANSACTION
22.  COMMIT
23.  ROLLBACK
24.  SAVEPOINT
25.  RELEASE SAVEPOINT
26.  Call Procedure
27.  Declare Variable
28.  SET Variable
29.  Comment Syntax
30.  SQL States

Chapter 7. Scalar Functions and Aggregate Functions

1.  Mathematical Functions
2.  Trigonometric Functions
3.  String Functions
4.  Date/Time Functions
5.  Boolean Functions
6.  System Functions
7.  Conversion Functions
8.  Security Functions
9.  Sequence Functions

10.  Miscellaneous Functions
11.  Aggregate Functions

Chapter 8. Answers to Frequently Asked Questions (FAQ) for the HXTT 
Paradox packge

1.  General Questions
2.  Applet Questions
3.  Remote Access Questions and Client/Server Mode Questions
4.  SQL Questions
5.  Index Questions
6.  Performance Questions
7.  Concurrence Questions
8.  Internationalization Questions
9.  Interoperability Questions

http://www.hxtt.com/paradox/document.html (3 / 4) [2008-6-27 12:00:42]



document.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 9. OpenAPI Programming

1.  Extend SQL functions
2.  Start/Stop Server Programmatically
3.  Customer Connection

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/document.html (4 / 4) [2008-6-27 12:00:42]



installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 2. Installation

Index: 

1.  System Requirements
2.  Setting the CLASSPATH 
3.  Loading the Driver
4.  Connecting to the Database

System Requirements

HXTT Paradox packages include a Type 4 JDBC driver. Type 4 indicates that the driver is written in Pure Java, and communicates in the database 
system's own network protocol. Because of this, the driver is platform independent; once compiled, the driver can be used on any system. HXTT 
Paradox can run on any platforms with Java VM, which includes Microsoft Windows, Novell Netware, OS2, UNIX, and LINUX. HXTT Paradox 
supports Personal Java, JDK1.0.X, JDK1.1.X, JDK1.2.X, JDK1.3.X, JDK1.4.X and JDK1.5.X. HXTT Paradox includes a database engine which can 
support multi-user access. It supports { UNION | INTERSECT | EXCEPT | MINUS } [ ALL ] query , INNER JOIN, FULL JOIN, LEFT JOIN, RIGHT 
JOIN, NATURAL JOIN, CROSS JOIN, and subquery which includes single-row subquery, multirow subquery, multiple-column subquery, inline 
views, and correlated subquery.

Setting the CLASSPATH 

When java loads any class, it searches a list known as the classpath. This is a list of directories where classes are placed, or a list of jar files (archives 
containing classes and other resources) or both. HXTT Paradox driver is a Type 4 driver. You can do this in many different methods, but the most 
command are:

1.  Setting the CLASSPATH environment variable.
2.  putting it on the command line using the -cp parameter. 
3.  placing it in the JVM/s lib/ext directory.
4.  extract all files in jar file into the directory of your application. 

You can know detailed information about "Setting the Classpath" from your JDK Tools and Utilities. Let's use JDBC3.0 package as a simple sample. To 
put Paradox_JDBC30.jar into your class path, you should use "export CLASSPATH=/usr/share/lib/Paradox_JDBC30.jar:$CLASSPATH" on Solaris 
and Linux, and "SET CLASSPATH=\javalib\Paradox_JDBC30.jar;%classpath%" on Windows.

Loading the Driver

Any source that uses JDBC needs to import the java.sql package by using " import java.sql.*;".

http://www.hxtt.com/paradox/installation.html (1 / 5) [2008-6-27 12:00:44]



installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

HXTT Paradox driver' name is com.hxtt.sql.paradox.ParadoxDriver, and you can uses it without involving hard coding the driver into your code. You 
do this by setting the jdbc.drivers system property. For example, for command line apps you can use:
java -Djdbc.drivers=com.hxtt.sql.paradox.ParadoxDriver yourApp
Then, the JVM upon startup will load the drivers automatically. Some applications (JBoss, Tomcat etc) support a .properties file which they use to save 
putting this on the command line.

The second method is the most common and involves you loading the driver yourself. It's simple:
Class.forName("com.hxtt.sql.paradox.ParadoxDriver");
From then on you can get connections from DriverManager.
Note: If Class.forName() throws ClassNotFoundException, you should check your classpath.

Connecting to the Database 

After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a particular database by calling 
DriverManager.getConnection(). With JDBC, a database is represented by a URL (Uniform Resource Locator). 

        Embedded:
                jdbc:paradox:[//]/[DatabasePath][?prop1=value1[;prop2=value2]] (You 
can omit that "//" characters sometimes)
                        For example:
                                "jdbc:paradox:/."
                                "jdbc:paradox:/c:/data" for Windows driver
                                "jdbc:paradox:///c:/data" for Windows driver
                                "jdbc:paradox:////usr/data" for unix or linux
                                "jdbc:paradox://///192.168.10.2/sharedir" for UNC 
path
                                "jdbc:paradox:/./data"
        Remote Access (client/server mode):
                jdbc:paradox://host:port/[DatabasePath]
                        For example: "jdbc:paradox://domain.com:3099/c:/data" if one 
ParadoxServer is run on the 3099 port of domain.com
        Compressed Database:(.ZIP, .JAR, .GZ, .TAR, .BZ2, .TGZ, .TAR.GZ, .TAR.BZ2) 
                jdbc url format is the same as embedded url and remote url.
                        For example:
                                "jdbc:paradox:/c:/test/testparadox.zip
        Memory-only Database:
                jdbc:paradox:/_memory_/
        URL Database:(http protocol, https protocol, ftp protocol)

http://www.hxtt.com/paradox/installation.html (2 / 5) [2008-6-27 12:00:44]



installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                jdbc:paradox:http://httpURL
                jdbc:paradox:https://httpsURL
                jdbc:paradox:ftp://ftpURL
                        For example:
                                "jdbc:paradox:http://www.hxtt.com/test"
        SAMBA Database:(smb protocol)
                                
jdbc:paradox:smb://[[[domain;]username[:password]@]server[:port]/[[share/[dir/]file]]][?[param=value]]
                        For example:
                                
"jdbc:paradox:smb://test1:123@100.100.13.94/paradoxfiles".zone"
        UNC path JDBC url:
                jdbc:paradox:/uncpath
                jdbc:paradox:///uncpath
                        For example:
                                "jdbc:paradox:/\\PC17\c$\values" 
                                "jdbc:paradox:/\\PC17\val"
        Free JDBC url:(Warning: only use it for special project)
                jdbc:paradox:/" or "jdbc:paradox:///". Then you can use some full UNC 
path names in SQL to visit anywhere where your Java VM has right to access.
                        For instance:
                                select * from \\amd2500\e$\paradoxfiles\test;
                                elect * from "\\amd2500\d$\paradoxiles".test;
                                select * from ".".test;

         HXTT Paradox supports seamlessly data mining on memory-only table, physical 
table, url table, compressed table, SAMBA table in a sql. More details
         is in Advanced Programming chapter.

To connect, you need to get a Connection instance from JDBC. To do this, you use the DriverManager.getConnection() method:

Connection con = DriverManager.getConnection(url, properties);

There are a few different signatures for the getConnection() method. You should see the API documentation that comes with your JDK for more specific 
information on how to use them. You can specify additional properties to the JDBC driver by placing them in a java.util.Properties instance and passing 
that instance to the DriverManager when you connect.

http://www.hxtt.com/paradox/installation.html (3 / 5) [2008-6-27 12:00:44]



installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Property Name Definition
Default 
Value

host The remote host on which one ParadoxServer is running null

port The port on which one ParadoxServer is listening null

serverType The type of ParadoxServer on the remote host null

user The user to connect as null

password The password to use when connecting null

charSet

To specify a Character Encoding Scheme other than the client default. You can find a 
Supported Encodings list of file:///c|/jdk1.2/docs/guide/internat/encoding.doc.html. 
Cp895(Czech MS - DOS 895), Cp620(Polish MS - DOS 620) and Mazovia are extra 
supported although JVM doesn't support those.

null

lockType
To specify a compatible lock for other applications of Paradox. This function hasn't been 
complemented.

null

lockTimeout
To specify Paradox driver's timeout in milliseconds to wait until other processes or 
Paradox applications released record lock or table lock. 0 means a default value, and <0 
means no wait.

1000

cryptType
To specify a crypt type for Table Encryption and Column Level Encryption. All new 
created table in this connection will become crypted table. You can use DES, TRIDES, 
and BLOWFISH now. 

null

cryptKey
To specify a crypt key. Without encrypt key, CREATE TABLE won't create crypted 
table.

null

storeCryptKey

Indicates whether crypt key is stored in crypted table. If stored, crypted table can be 
opened automatically in any connection without predefined crypt properites. If not 
stored, cryptd table can only be opened with correct key, and none include us can help 
you in cracking your data without the correct key.

false

tmpdir
Indicates whether set a temp directory, Default: the value of JVM's "java.io.tmpdir" 
property. If that value is incorrect, uing the directory of JDBC url.

null

delayedClose
Indicates the delayed seconds for close transaction. That option is used to avoid frequent 
close/open table operations for following sqls. You can use 0~120 seconds. Default: 3.

null

maxIdleTime

Indicates the max idle time in minute for remote connection. That option is mainly used 
to avoid closing automatically idle remote connection for connection pool. Embedded 
idle connectoin won't be closed automatically except for garbage collection. You can use 
1~1440 minutes. Default: 30.

null

http://www.hxtt.com/paradox/installation.html (4 / 5) [2008-6-27 12:00:44]



installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

maxCacheSize
Indicates the max memory utilization for per table on automatic temporary index or 
matched result cache. You can use 16~65536 kilo bytes. Default: 1024.

null

versionNumber
Paradox Version Number. You can use null, "3"(version 3.0), "3.5"(version 
3.5),"4"(version 4.x), "5"(version 5.x), or "7"(version 7.x~11.x). This parameter is only 
used for CREATE TABLE.

7

blockSize
Paradox's block size. You can use null,"1024","2048","3072","4096","16384","32768", 
and so on.

null

When your code then tries to open a Connection, and you get a No driver available SQLException being thrown, this is probably caused by the driver 
not being in the class path, or the JDBC url not being correct.

To close the database connection, simply call the close() method to the Connection: 

con.close();

  

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/installation.html (5 / 5) [2008-6-27 12:00:44]



statement.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 3. Statement

Index: 

1.  Creating a Statement Instance
2.  Issuing a Query 
3.  Performing Updates
4.  Creating and Modifying Database Objects

Creating a Statement Instance

Once a Connection is established, it can be used to create Statements and PreparedStatements. Any time you want to 
issue SQL statements to the database, you require a Statement or PreparedStatement instance. To get a Statement object, 
you call the createStatement() method on the Connection object you have retrieved via the 
DriverManager.getConnection() method. Once you have a Statement object, you can execute a SELECT query by 
calling the executeQuery(String SQL) method with the SQL you want to use. To update data in the database use the 
executeUpdate(String SQL) method. This method returns the number of rows affected by the update statement. If you 
don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the 
execute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if an 
UPDATE/INSERT/DELETE query. If the query was a SELECT query, you can retrieve the results by calling the 
getResultSet() method. If the query was an UPDATE/INSERT/DELETE query, you can retrieve the affected rows count 
by calling getUpdateCount() on the Statement instance. This is explained in the following sections.

Issuing a Query

A simple sample can illustrates more than some words: 

            String sql = "select * from test where int1>0";

            Connection con = DriverManager.getConnection(url, "", "");

            Statement stmt = con.createStatement();
                        
            ResultSet rs = stmt.executeQuery(sql);

            ResultSetMetaData resultSetMetaData = rs.getMetaData();
            int iNumCols = resultSetMetaData.getColumnCount();
            for (int i = 1; i <= iNumCols; i++) {
                System.out.println(resultSetMetaData.getColumnLabel(i)
                                   + "  " +
                                   resultSetMetaData.getColumnTypeName(i));
            }

            Object colval;
            while (rs.next()) {
                for (int i = 1; i <= iNumCols; i++) {
                    colval = rs.getObject(i);
                    System.out.print(colval + "  ");
                }

http://www.hxtt.com/paradox/statement.html (1 / 4) [2008-6-27 12:00:48]



statement.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                System.out.println();
            }

            rs.close();
            stmt.close();
            con.close();

This example issues the same query as before but uses a PreparedStatement and a bind value in the query. 

            String sql = "select * from test where int1>?";

            Connection con = DriverManager.getConnection(url, "", "");

            PreparedStatement stmt = con.prepareStatement(sql);
                        
            stmt.setInt(1, 0);

            ResultSet rs = stmt.executeQuery();

            ResultSetMetaData resultSetMetaData = rs.getMetaData();
            int iNumCols = resultSetMetaData.getColumnCount();
            for (int i = 1; i <= iNumCols; i++) {
                System.out.println(resultSetMetaData.getColumnLabel(i)
                                   + "  " +
                                   resultSetMetaData.getColumnTypeName(i));
            }

            Object colval;
            while (rs.next()) {
                for (int i = 1; i <= iNumCols; i++) {
                    colval = rs.getObject(i);
                    System.out.print(colval + "  ");
                }
                System.out.println();
            }

            rs.close();
            stmt.close();
            con.close();

You can use a single Statement instance as many times as you want. You could create one as soon as you open the 
connection and use it for the connection's lifetime. But you have to remember that only one ResultSet can exist per 
Statement or PreparedStatement at a given time. When you are done using the Statement or PreparedStatement, you 
should close it.

Before reading any values from ResultSet, you have to call next(). This returns true if there is a result, but more 
importantly, it prepares the row for processing. Under the JDBC specification, you should access a column only once. It 
is safest to stick to this rule, although the HXTT Paradox driver will allow you to access a column as many times as you 
want. You should close a ResultSet by calling close() once you have finished using it too. Once you make another query 
with the Statement used to create a ResultSet, the currently open ResultSet instance is closed automatically. The HXTT 

http://www.hxtt.com/paradox/statement.html (2 / 4) [2008-6-27 12:00:48]



statement.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Paradox driver supports updatable result sets, but an updatable query can only span one table (i.e. no joins).

  

Performing Updates

To change data (perform an INSERT, UPDATE, or DELETE), you should use the executeUpdate() method. This 
method is similar to the method executeQuery() used to issue a SELECT statement, but it doesn't return a ResultSet; 
instead it returns the number of rows affected by the INSERT, UPDATE, or DELETE statement. This example will issue 
a simple UPDATE statement and print out the number of rows updated. 

            String sql="update test set boolean1=not boolean1 where recno()%5=0";

            Connection con = DriverManager.getConnection(url, "", "");

            Statement stmt=con.createStatement();

            int updateCount=stmt.executeUpdate(sql);
            System.out.println(sql+" : "+updateCount);

            stmt.close();
            con.close();

Creating and Modifying Database Objects 

To create, modify or drop a database object like a table, index, or view, you should use the execute() method. This 
method is similar to the method executeUpdate(), but it doesn't return a result. This example will drop a table. 

            String sql="drop table test";

            Connection con = DriverManager.getConnection(url, "", "");

            Statement stmt=con.createStatement();

            stmt.execute(sql);
                        
            stmt.close();
            con.close();

The HXTT Paradox driver can create, modify or drop a database object like a table, index, or view through 
executeUpdate(), but the returned result is unexpectable. For instance, dropping a table can return 1(only one table file), 
2(two table files, or one table files and one index file), 3, 4, and so on. The returned result of executeUpdate() is valuable 
when it creates something with IF NOT EXISTS clause, or drops something with IF EXISTS clause. This example will 
drop a test table if that table exists. 

            String sql="drop table if exists test";

            Connection con = DriverManager.getConnection(url, "", "");

http://www.hxtt.com/paradox/statement.html (3 / 4) [2008-6-27 12:00:48]



statement.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            Statement stmt=con.createStatement();

            boolean droppedFlag=stmt.executeUpdate(sql)!=0;
                        
            stmt.close();
            con.close();

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/statement.html (4 / 4) [2008-6-27 12:00:48]



resultset.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 4. ResultSet

Index: 

1.  ResultSet Overview
2.  Providing Performance Hints
3.  Performing Updates
4.  Serializing ResultSet

ResultSet Overview

A ResultSet is a Java object that contains the results of executing an SQL query. In other words, it contains the rows that 
satisfy the conditions of the query. The data stored in a ResultSet object is retrieved through a set of get methods that allows 
access to the various columns of the current row. The ResultSet.next method is used to move to the next row of the ResultSet, 
making it the current row.

A ResultSet object maintains a cursor, which points to its current row of data. The cursor moves down one row each time the 
method next is called. When a ResultSet object is first created, the cursor is positioned before the first row, so the first call to 
the next method puts the cursor on the first row, making it the current row. ResultSet rows can be retrieved in sequence from 
top to bottom as the cursor moves down one row with each successive call to the method next. A scrollable result set's cursor 
can move both forward and backward as well as to a particular row. The following methods move the cursor backward, to the 
first row, to the last row, to a particular row number, to a specified number of rows from the current row, and so on: previous, 
first, last, absolute, relative, afterLast, and beforeFirst. As with scrollability, making a ResultSet object updatable increases 
overhead and should be done only when necessary. That said, it is often more convenient to make updates programmatically, 
and that can only be done if a result set is made updatable.

The HXTT Paradox driver supports scrollable updatable result set.

Providing Performance Hints

The number of rows that should be fetched from the database each time new rows are needed. The number of rows to be 
fetched is called the fetch size, and it can be set by two different methods: Statement.setFetchSize and ResultSet.setFetchSize. 
The statement that creates a ResultSet object sets the default fetch size for that ResultSet object, using the Statement method 
setFetchSize. The following code fragment sets the fetch size for the ResultSet object rs to 10. Until the fetch size is changed, 
any result set created by the Statement object stmt will automatically have a fetch size of 10. 

  
        Statement stmt = con.createStatement();
        stmt.setFetchSize(10);
        ResultSet rs = stmt.executeQuery("SELECT * FROM test");

A result set can, at any time, change its default fetch size by setting a new fetch size with the ResultSet version of the method 
setFetchSize. Continuing from the previous code fragment, the following line of code changes the fetch size of rs to 50: 

  
        stmt.setFetchSize(50);

Normally the most efficient fetch size is already the default for the HXTT Paradox driver. The method setFetchSize simply 

http://www.hxtt.com/paradox/resultset.html (1 / 3) [2008-6-27 12:00:50]



resultset.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

allows a programmer to experiment to see if a certain fetch size is more efficient than the default for a particular application. 

Performing Updates

A ResultSet object may be updated (have its rows modified, inserted, or deleted) programmatically if its concurrency type is 
CONCUR_UPDATABLE. The following example demonstrates show how to update, delete, and insert data.

            PreparedStatement stmt = con.prepareStatement(
                "select int1,float1,clob1 from test where double1<=?",
                ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

            stmt.setFetchSize(12);

            stmt.setDouble(1, 0);
            ResultSet rs = stmt.executeQuery();

            ResultSetMetaData resultSetMetaData = rs.getMetaData();
            int iNumCols = resultSetMetaData.getColumnCount();
            for (int i = 1; i <= iNumCols; i++) {
                System.out.println(resultSetMetaData.getColumnLabel(i));
            }

            Object colval;
            while (rs.next()) {
                for (int i = 1; i <= iNumCols; i++) {
                    colval = rs.getObject(i);
                    System.out.print(colval + "  ");
                }
                System.out.println();
            }

            rs.first();
            rs.relative(5);
            rs.updateString(3, "eeees333ee3");
            rs.updateFloat("float1", 11111.2111f);
            rs.updateRow();

            rs.absolute(6);
            rs.deleteRow();

            rs.relative( -2);
            rs.refreshRow();

            rs.moveToInsertRow();
            rs.updateInt(1, 10000);
            rs.updateFloat(2, 1000000.0f);
            rs.updateObject(3,
                            "abc" + (new java.sql.Time(System.currentTimeMillis())));
            rs.insertRow();
            rs.moveToCurrentRow();

            System.out.println("After be updated:");

http://www.hxtt.com/paradox/resultset.html (2 / 3) [2008-6-27 12:00:50]



resultset.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            rs.beforeFirst();
            while (rs.next()) {
                for (int i = 1; i <= iNumCols; i++) {
                    colval = rs.getObject(i);
                    System.out.print(colval + "  ");
                }
                System.out.println();
            }
                        
            rs.close();
            stmt.close();
            con.close();

Serializing ResultSet

The HXTT Paradox driver's result set is Serializable.

        // serialize the resultSet
        java.io.FileOutputStream fileOutputStream = new 
java.io.FileOutputStream("testrs.tmp");
        java.io.ObjectOutputStream objectOutputStream = new 
java.io.ObjectOutputStream(fileOutputStream);
        objectOutputStream.writeObject(rs);
        objectOutputStream.flush();
 
        rs.close();
        rs = null;

        // deserialize the resultSet
        java.io.FileInputStream fileInputStream = new 
java.io.FileInputStream("testrs.tmp");
        java.io.ObjectInputStream objectInputStream = new 
java.io.ObjectInputStream(fileInputStream);
        rs = (ResultSet) objectInputStream.readObject();

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/resultset.html (3 / 3) [2008-6-27 12:00:50]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 5. Advanced Programming

Index: 

1.  Sending Very Large IN Parameters
2.  Set Record Lock Manually
3.  Table Level Encryption
4.  Bulk Insert
5.  Bulk Insert A ResultSet from any JDBC driver
6.  Transaction Processing
7.  RowSet
8.  PooledConnection
9.  SSL Connection

10.  Run HXTT ParadoxServer as Windows Service or Linux(Solaris) Daemon
11.  DBAdmin (A GUI Dtabase Server Manager)
12.  How to Use Memory-only Table, Physical Table, Url table, Compressed table, SAMBA table in a SQL.
13.  Create Table from any java.io.InputStream object.

Sending Very Large IN Parameters

The methods setBytes, setString, setBinaryStream, setAsciiStream, setCharacterStream, setBlob, and setClob are capable of 
sending unlimited amounts of data. The following code illustrates using a stream to send the contents of a file as an IN 
parameter. 

            String sql="update test SET clob1 = ?, blob1=? WHERE float1>=?*PI()%5 or 
float1=0";
            java.sql.PreparedStatement pstmt = con.prepareStatement(sql);

            java.io.File file = new java.io.File(dir+"/somechar.txt");
            int fileLength =(int) file.length();
            java.io.InputStream fin = new java.io.FileInputStream(file);
            pstmt.setCharacterStream(1,new java.io.InputStreamReader(fin), 
fileLength);
            pstmt.setObject(2, "A serialized class");
            pstmt.setFloat(3,0);
            pstmt.executeUpdate();
            pstmt.close();
                        

Set Record Lock Manually

_LockFlag_ is a virtual column for row lock flag. You can use "select _LockFlag_,* from yourTable" to get an Updatable 
ResultSet, then use three functions below:
boolean ResultSet.setBoolean("_LockFlag_",true)//Lock the current row.
boolean ResultSet.setBoolean("_LockFlag_",false);//Unlock the current row.
boolean ResultSet.getBoolean("_LockFlag_")//indicates whether the current row has been locked by other process or 
application.
If ResultSet.close() is called, all pending record locks will be released automatically. "update yourTable set _LockFlag_=true 
where condition", and "update yourTable set _LockFlag_=false where condition" can lock/unlock records too, but you have to 
take care of every record lock.

http://www.hxtt.com/paradox/advanced.html (1 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            Connection connection1= 
DriverManager.getConnection("jdbc:DBF:/.",properties);

            Statement stmt1 = 
connection1.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
                ResultSet.CONCUR_UPDATABLE);
            stmt1.executeUpdate("CREATE TABLE IF NOT EXISTS testlock(int1 int,char1 
varchar(100));"
                               +"INSERT INTO testlock VALUES(1,'DFFDFSDF');"
                               +"INSERT INTO testlock VALUES(2,'aaaa');"
                               );

            ResultSet rs=stmt1.executeQuery("select _lockFlag_,* from testlock where 
int1=1");
//            ResultSet rs=stmt1.executeQuery("select recno(),_lockFlag_,* from 
testlock where int1=1");

            rs.next();

            boolean lockResult=rs.getBoolean("_LockFlag_");//indicates whether the 
current row has been locked by other process or application
            if(lockResult){
                System.out.println("Maybe other application has locked it!");
            }

            //Through moving the cursor of ResultSet, many rows can be locked  at the 
same time.
            rs.updateBoolean("_LockFlag_",true);//Lock Row
            rs.updateRow();

            boolean isLockedResult=rs.getBoolean("_lockFlag_");//indicates whether 
the current row has been locked by other process or application
            if(!isLockedResult){
                System.out.println("It's impossible since the current row is just 
locked!");
            }

            Connection connection2= 
DriverManager.getConnection("jdbc:DBF:/.",properties);
            Statement stmt2 = 
connection2.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
                ResultSet.CONCUR_UPDATABLE);
            if(true){//Whether show a wrong code block.
                try{
                    int result = stmt2.executeUpdate(
                        "UPDATE testlock set int1=1 where int1=1");
                    System.out.println("update count:" + result);
                }catch(SQLException e){
                    System.out.println("update error:"+e);//lock error
                }

                rs.updateInt("int1",1);

http://www.hxtt.com/paradox/advanced.html (2 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                rs.updateRow();//Pass since it's locked by rs.
            }else{
                int result=stmt2.executeUpdate("UPDATE testlock set int1=1 where 
int1=1 and not rowlocked()");
                System.out.println("update count:"+result);

                rs.updateInt("int1",1);
                rs.updateRow();//Pass since it's locked by rs.

                result= connection1.createStatement().executeUpdate("UPDATE testlock 
set int1=1 where int1=1");//Pass since it's a statement of the same connection.
                System.out.println("update count:"+result);

                rs.updateBoolean("_LockFlag_",false);////Unlock Row
                rs.updateRow();
                isLockedResult=rs.getBoolean("_lockFlag_");//indicates whether the 
current row has been locked by other process or application
                if(isLockedResult){
                    System.out.println("Falied to unlock the current row!");
                }

                result=stmt2.executeUpdate("UPDATE testlock set int1=1 where 
int1=1");
                //BTW, you can use "UPDATE testlock set int1=int1+1 where ..." in a 
multi-user. DBF will fetch the latest int1 value for calculation.
                System.out.println("update count:"+result);
            }

            rs.close();

            stmt2.close();
            connection2.close();

            stmt1.close();
            connection1.close();

Table Level Encryption

If you create table in a connection with crypt properites, those table will become encrypted tables. You needn't take care too 
much about encrypt/decrypt since it's a Table LEVEL Encryption.

            properties.setProperty("cryptType", "des");//To specify an crypt type for 
Table Encryption and Column Level Encryption. All new created table in this 
connection will become crypted table. You can use DES, TRIDES, and BLOWFISH now. 
Deafult:null
            properties.setProperty("cryptKey", "123 myKey 456");//To specify an 
encrypt key. Without encrypt key, CREATE TABLE won't create crypted table.
            properties.setProperty("storeCryptKey", "true");//Indicates whether crypt 
key is stored in crypted table. If stored, crypted table can be opened automatically 
in any connection without predefined crypt properites. If not stored, cryptd table 
can only be opened with correct key. Default:false

http://www.hxtt.com/paradox/advanced.html (3 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            Connection con = DriverManager.getConnection(url,properties);

You needn't encrypt/decrypt a total table sometimes, then you can used some crypt functions to protect your sensitive data:
ENCRYPT(content,cKey,cCryptMethod): Returns a crypted byte[]. cCryptMethod should be 'DES', 'TRIDES', or 
'BLOWFISH' now. ENCRYPT function is used for VARBINARY column. 
DECRYPT(content,cKey,cCryptMethod): Returns a decrypted byte[]. cCryptMethod should be 'DES', 'TRIDES', or 
'BLOWFISH' now. 
ENCODE(content): Encodes a BASE64 encoding string. 
DECODE(content): Returns a byte[] from a BASE64 string. 
ENCODE(content,cKey,cCryptMethod): Crypts and encodes content. cCryptMethod should be 'DES', 'TRIDES', or 
'BLOWFISH'. ENCRYPT function is used for VARCHAR column. 
DECODE(content,cKey,cCryptMethod): Decodes and decrypts content. cCryptMethod should be 'DES', 'TRIDES', or 
'BLOWFISH' now.
For instance:

select encode('adsdfsdf');
select decode(encode('adsdfsdf'))+'';
select decode(encode('dfdffd233','12345','trides'),'12345','trides')+':('
select decrypt(encrypt('25355','12345','trides'),'12345','trides')+':('
select decrypt(encrypt('25355','12345','des'),'12345','des')+':('
select decrypt(passwd,'12345','des') from test;
insert into users (user,passwd) values('abc',encode('abcpasswd','a key','trides');
select count(*) from user where users=? and passwd=encode(?,'a key','trides');
select count(*) from user where users=? and decode(passwd,'a key','trides')=?; 

VARBINARY's Encrypted Data Column Length=Maximum length of the non-encrypted data + 1 byte + The number of bytes 
to the next 8-byte boundary. For instance, your data is 8 byte, you can use varbinary of 9 byte length (or binary of 8 byte) to 
stored the encrypted data. Your data is 12 byte, you can use varbinary of 17 byte length to stored the encrypted data. 
VARCHAR's Encrypted Data Column Length= (VARBINARY's Encrypted Data Column Length)*4/3. For instance, your 
data is 8 byte, you need 12 byte to stored the BASE64 encoding encrypted data.

Bulk Insert

"CREATE TABLE [IF NOT EXISTS] table-name [(column-identifier data-type [constraint] [,...])] [AS] [SELECT query]", 
and "INSERT INTO table-name [ ( column-identifier [,...] ) ] SELECT query" can copy a table to another table or allow insert 
of multiple rows in one statement. For instance, "CREATE TABLE newtable select * from table1 where column1!=null order 
by column2;", and "insert into test (int1,char1) select id1,name1 from abc where id1>50 and value1>300". SQL does't permit 
that table1 is the same table as table2 when INSERT INTO table1 select * from table2, but the HXTT Paradox supports such 
an unadvisable operation, for instance,"insert into table1 select * from table1;".

Bulk Insert A ResultSet from any JDBC driver

The HXTT Paradox supports to insert data from other JDBC drivers. "CREATE TABLE [IF NOT EXISTS] table-name 
[(column-identifier data-type [constraint] [,...])] ?", and "INSERT INTO table-name [ ( column-identifier [,...] ) ] ?" is for that 
purpose.

            //rs is an open ResultSet from any JDBC driver.
            String sql="insert into test ?;";

            PreparedStatement pstmt = con.prepareStatement(sql);

http://www.hxtt.com/paradox/advanced.html (4 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            pstmt.setObject(1,rs);//insert a resultSet into table test.
            pstmt.executeUpdate();

            pstmt.close();

            sql="create table if not exists abcd ?;";
            pstmt = con.prepareStatement(sql);

            pstmt.setObject(1,rs);//insert a resultSet into a new table abcd
            pstmt.executeUpdate();
                        
            pstmt.close();

Notes: If your ResultSet.getType()==ResultSet.TYPE_FORWARD_ONLY, and you have used ResultSet.next() to browsed 
some rows, you won't insert those browsed rows. Other conditions, all rows will be inserted.

BTW, the HXTT Paradox driver's result set is Serializable.

    // serialize the resultSet
    try {
        java.io.FileOutputStream fileOutputStream = new 
java.io.FileOutputStream("yourfile.tmp");
        java.io.ObjectOutputStream objectOutputStream = new 
java.io.ObjectOutputStream(fileOutputStream);
        objectOutputStream.writeObject(rs);
        objectOutputStream.flush();
        objectOutputStream.close();
        fileOutputStream.close();
    }
    catch (Exception e) {
        System.out.println(e);
        e.printStackTrace();
        System.exit(1);
    }

    // deserialize the resultSet
    try {
        java.io.FileInputStream fileInputStream = new 
java.io.FileInputStream("yourfile.tmp");
        java.io.ObjectInputStream objectInputStream = new 
java.io.ObjectInputStream(fileInputStream);
        rs = (ResultSet) objectInputStream.readObject();
        objectInputStream.close();
        fileInputStream.close();
    }
    catch (Exception e) {
        System.out.println(e);
        e.printStackTrace();
        System.exit(1);
    }

http://www.hxtt.com/paradox/advanced.html (5 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

 

RowSet

com.hxtt.sql.HxttRowSet can work with any descendent class of java.sql.DataSource. For instance: 

import java.sql.*;
import java.util.Properties;

import com.hxtt.sql.HxttDataSource;
import com.hxtt.sql.HxttRowSet;

public class testRowSet{
    public static void main(String argv[]){
        try{
            Class.forName("com.hxtt.sql.paradox.ParadoxDriver").newInstance();

            HxttDataSource ds=new HxttDataSource();
            ds.setUrl("jdbc:dbf:/f:/dbfiles");

            HxttRowSet rowSet=new HxttRowSet(ds);
            /*
             Another way:
              HxttRowSet rowSet=new HxttRowSet();
              rowSet.setDataSourceName(dsName);
              will use
                         Context ctx = new InitialContext();
                         return (DataSource) ctx.lookup(dataSourceName);
               to load the ds.
             */

            rowSet.setCommand("select * from test");

            rowSet.execute();

            ResultSetMetaData resultSetMetaData = rowSet.getMetaData();
            int iNumCols = resultSetMetaData.getColumnCount();
            for (int i = 1; i <= iNumCols; i++) {
                System.out.println(resultSetMetaData.
                    getColumnLabel(i)
                    + "  " +
                    resultSetMetaData.getColumnTypeName(i));
            }

            rowSet.beforeFirst();
            while (rowSet.next()) {
                for (int i = 1; i <= iNumCols; i++) {
                    System.out.print(rowSet.getObject(i) + "  ");
                }

http://www.hxtt.com/paradox/advanced.html (6 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                System.out.println();
            }

            rowSet.close();

        }
        catch( SQLException sqle )
        {
            do
            {
                System.out.println(sqle.getMessage());
                System.out.println("Error Code:"+sqle.getErrorCode());
                System.out.println("SQL State:"+sqle.getSQLState());
                sqle.printStackTrace();
            }while((sqle=sqle.getNextException())!=null);
        }
        catch( Exception e )
        {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }
    }
}

 

PooledConnection

For instance: 

            com.hxtt.sql.HxttConnectionPoolDataSource pds=new 
com.hxtt.sql.HxttConnectionPoolDataSource();
            pds.setUrl("jdbc:dbf:/f:/dbffiles");
            javax.sql.PooledConnection pc=pds.getPooledConnection();

 

SSL Connection

SSL Connection has been provided since JDK1.4.X. To use SSL Connection, you should know how to use javax.net.ssl 
package first. With hxtt.socketclass=SSL system property, all of HXTT ParadoxServer's receiving connections in one JVM 
will become SSL connection. For client side, using hxtt.socketclass=SSL or hxtt.socketclass=null as connection property will 
overlay hxtt.socketclass system property so that it's possible that some connections are SSL connection, but other connections 
are common connections or customer connections.
For instnace, you can use java -Djavax.net.ssl.keyStore=yourKeyStore -
Djavax.net.ssl.keyStorePassword=yourKeyStorePassword -Djavax.net.ssl.trustStore=yourTruststore -
Djavax.net.ssl.trustStorePassword=yourTrustStorePassword -Dhxtt.socketclass=ssl -cp yourClassPath 
com.hxtt.sql.admin.Admin to start a HXTT ParadoxServer with SSL Connection capability. If you wish to use HXTT 
ParadoxServer as Linux(Solaris) dameon or Windows Service without GUI, you should read Run HXTT ParadoxServer as 
Windows Service or Linux(Solaris) Daemon too.
java -Djavax.net.ssl.trustStore=yourTruststore -Djavax.net.ssl.trustStorePassword=yourTrustStorePassword -

http://www.hxtt.com/paradox/advanced.html (7 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Dhxtt.socketclass=ssl -cp yourClassPath yourApplication will let your application to use SSL for remote connection.
If you wish to write customer connection, please click Customer Connection. 

 

Run HXTT ParadoxServer as Windows Service or Linux(Solaris) Daemon

In Linux(Solaris),we assume that you save it to /jdbclib directory.
In Windows,we assume it is c:/ . You should have built the database server configuration by com.hxtt.sql.admin.Admin 
program. It will create a file named 
urlconfig.properties which locate on the user home directory. 
For example,in Linux(Solaris),you build the database server configuration in root user,the urlconfig.properties will located
at /root directory if the root's home directory is /root;in windows,it will be the C:\Documents and Settings\Administrator.
You should copy the file to other directory for the service program maybe not access the file.In Linux(Solaris),we assume you 
copy it 
to /jdbclib;in windows,we assume it is c:/.

In windows,you can use JavaService.exe(Here to download) to register a window service to start the servers.
   Here is a simple bat file to tell you how to register a service,you should change some options
   accord your enviromnent.After you download these two files ,you can run the bat file to register and start the 
   service at the Control Panel.

In Linux(Solaris),you can use jsvc(Here to download) as a daemon to start the servers for remote connection.
1.You should download the Apache common daemons package(Here to download).
We assume that you save this two files to /commondaemon directory.
2.please run the follows command to enable the exec file property. 
chmod +x /commondaemon/jsvc 
Attention,the jsvc program has tested at RedHat 9.0 and Sun Open Desktop System 1.0.If it don't work at 
your enviroment,please download the jsvc source and make a binary program or tell us your environment. 
3.run the follows command to know the default run level of your machine.
cat /etc/inittab | grep :initdefault
it's result will be as follows: id:3:initdefault
or 
runlevel
it's result will be as follows:N 3
In common,the default run level should be 3 or 5.
4.Please download the hxttjsvcserv script to save it to /etc/init.d directory and run the follows command to enable the file exec-
able bit mask .
chmod +x /etc/init.d/hxttjsvcserv 
Attension ,if you don't put HXTT Paradox Package to /jdbclib directory or jsvc and commons-daemon.jar to /commondaemon 
directory,you should modify the
hxttjsvcserv file to fit your configuration. 
BTW,the default user run this service is root,maybe you should changed it to another low right user.Please see the dbfjsvcserv 
for more detail 
information. 
5.cd /etc/rcx.d (x is the run level,in some os,the rcx.d is not directly located in /etc directory,you can use find . -name rcx.d to 
find where is it) 
At first you should list all the file for find the new service's running sequence number;
run the command
ls
You will see some files which starts with K or S,for example,S99local and K99local.

http://www.hxtt.com/paradox/advanced.html (8 / 12) [2008-6-27 12:00:56]

http://www.hxtt.com/test/JavaService.exe
http://www.hxtt.com/test/simple.bat
http://www.hxtt.com/test/jsvc
http://www.apache.org/
http://www.hxtt.com/test/commons-daemon.jar
http://www.hxtt.com/test/hxttjsvcserv


advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

S99local is the run script file when start this machine.
K99local is the stop script file when shut down this machine.
local is the service name.K represent kill and S represent the start.
This two files all are a file linked to /etc/init.d/local.This is,when starting machine,OS will run local 
script with start parameter and when stopping with stop parameter.
99 is the run sequence number when start this machine.
For example,httpd service will start before this local service and stop after the local service for its start 
script file name is S15httpd and end script file name is K15httpd.
Find the max running sequence number,in my machine,it is 99,so the new service's running sequence number will be 100.
run the command to build this two file.
ln -s /etc/init.d/hxttjsvcserv S100hxttjsvcserv
ln -s /etc/init.d/hxttjsvcserv K100hxttjsvcserv
now you can run /etc/init.d/hxttjsvcserv start to start the service or reboot your machine to test if this service can auto start.

For Novell Netware OS console without GUI, you can also run directly com.hxtt.sql.admin.HxttService with above same 
parameters.
On LINUX and UNIX, if you got "Cannot connect to X11 window server. The environment variable DISPLAY is not set.", 
you should use -Djava.awt.headless=true to run Java in headless mode.

How to Use Memory-only Table, Physical Table, Url table, Compressed table, SAMBA table in a SQL.

1. Compressed Database:(.ZIP, .JAR, .GZ, .TAR, .BZ2, .TGZ, .TAR.GZ, .TAR.BZ2) 
    jdbc url format is the same as embedded url and remote url.For example, "jdbc:paradox:/c:/test/testparadox.zip ,then you can 
use slect * from aTable to visit aTable table in testparadox.zip file.
    No special requirement for sql. Both of the compressed file name and directory name in compressed file are also used as 
catalog name. For instance, "jdbc:paradox:/c:/test", select * from "testparadox.zip".a; select * from 
"testparadox.zip/files/a.csv"; select * from "b.tar.bz2/java"."history.txt";
    For TAR and BZ2 support, you should download Apache's tarbz2.jar package.
    You can use compressed table in sql with the common table. For instance, select * from "testparadox.zip/files/a.csv",test;
    For case-insensitive sql compatibility, all name of directory and file in compressed file are case-insensitive too.
    Compressed database is reaonly, and all data modification won't be flushed into compressed file.

2. Memory-only Database:
    jdbc url: jdbc:paradox:/_memory_/
    No special requirement for sql. For instance, create table abc (a char(10));insert into abc values(333);select * from abc;drop 
table abc;
    Memory-only database is hold commonly in memory, but it will be stored into temporary directory if its length exceed 8MB 
limitation to avoid memory overburden.
    _memory_ is a speical catalog name for memory-only database. Through _memory_ catalog, memory-only database is 
visible for all applications in the same JVM. For instance, in an embedded connection, you can use create table _memory_.abc 
(a char(10));insert into _memory_.abc values(333);select * from _memory_.abc;drop table _memory_.abc; to do the same 
things.
    You can use memory-only table in sql with the common table. For instance, select * from _memory_.abc,test;
    Memory-only database is volatile, and you can't see your old data any more after restart a JVM.

3. URL Database:(http protocol, https protocol, ftp protocol)
    jdbc:paradox:http://httpURL
    jdbc:paradox:https://httpsURL
    jdbc:paradox:ftp://ftpURL
    For example, "jdbc:paradox:http://www.hxtt.com/test", then you can use "slect * from aTable to visit aTable table. Because 
All of http, https, and ftp protocol are case-sensitive, you have to take care of your sql, and use proper table file suffix to avoid 
FileNotFound exception.

http://www.hxtt.com/paradox/advanced.html (9 / 12) [2008-6-27 12:00:56]

http://www.hxtt.com/test/tarbz2.jar


advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    Without URL database url, you can access url database in an embedded connection too. For instance, select * from 
"http://www.hxtt.com/test/a.tar".a; select * from "http://www.hxtt.com/test/a.jsp?aaa=33"
    You can use url table in sql with the common table. For instance, select * from "http://www.hxtt.com/test/a.tar".a,abc;
    URL database is reaonly, and all data modification won't be flushed into URL content. If you're using a dial-up network, 
don't waste time to access too big URL database.
    For https support in JDK 1.2.x and 1.3.x, you should download JSSE 1.0.3 package.
4. SAMBA Database:(smb protocol)
    jdbc:paradox:smb://[[[domain;]username[:password]@]server[:port]/[[share/[dir/]file]]][?[param=value]]
        For example, "jdbc:paradox:smb://test1:123@100.100.13.94/paradoxfiles", then you can use "slect * from aTable to visit 
aTable table.
    Without SAMBA database url, you can access SAMBA database in an embedded connection too. For instance, select * from 
"smb://test1:123@100.100.13.94/paradoxfiles/zone"
    You can use SAMBA table in sql with the common table. For instance, select * from 
"smb://test1:123@100.100.13.94/paradoxfiles".zone,abc;
    For SAMBA support, you should download Java CIFS Client Library, which is developed by Michael B. Allen.

    HXTT Paradox supports seamlessly data mining on memory-only table, physical table, url table, compressed table, SAMBA 
table in a sql. A compressed database can be a URL database or SAMBA database at the same time. It's powerful, and you 
should ask for HXTT's support if you don't know how to use it for special purpose. 

Create Table from any java.io.InputStream object

At Bulk Insert A ResultSet from any JDBC driver, we discuss how to use "CREATE TABLE [IF NOT EXISTS] table-name 
[(column-identifier data-type [constraint] [,...])] ?" to create a table from any JDBC ResultSet. In fact, that sql syntax can be 
used to copy and create a table from any java.io.InputStream object. Let's see a sample, which creates a physical table and a 
memory-only table from a HTTP stream. 

import java.net.URL;
import java.net.URLConnection;

import java.io.IOException;
import java.io.InputStream;
import java.sql.*;
import java.util.Properties;

public class testInputCreate{
    private static void test(String url){
        System.out.println(url);
        try {
            Class.forName("com.hxtt.sql.text.TextDriver").newInstance();

            Properties properties=new Properties();
            Connection con = DriverManager.getConnection(url,properties);

            String sql;
            PreparedStatement pstmt;

            sql="create table testaaa ?";
            pstmt = con.prepareStatement(sql);

            URL httpurl=new URL("http://www.hxtt.com/test/a.csv");
            URLConnection urlConnection=httpurl.openConnection();
            InputStream is=urlConnection.getInputStream();

http://www.hxtt.com/paradox/advanced.html (10 / 12) [2008-6-27 12:00:56]

http://java.sun.com/products/jsse/index-103.html
http://www.hxtt.com/test/jcifs.jar
http://jcifs.samba.org/


advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

            pstmt.setObject(1,is);//create a table from a HTTP stream
            pstmt.executeUpdate();
            
            pstmt.close();
            in.close();

            sql = "select * from testaaa";
            Statement stmt=con.createStatement();
            ResultSet rs = stmt.executeQuery(sql);

            ResultSetMetaData resultSetMetaData = rs.getMetaData();
            int iNumCols = resultSetMetaData.getColumnCount();
            for (int j = 1; j <= iNumCols; j++) {
                System.out.println(resultSetMetaData.getColumnLabel(j)
                    + "  " + resultSetMetaData.getColumnTypeName(j)
                    + "  " + resultSetMetaData.getColumnDisplaySize(j)
                    );
            }
            Object colval;

            rs.beforeFirst();
            long ncount = 0;
            while (rs.next()) {
                ncount++;
                for (int j = 1; j <= iNumCols; j++) {
                    colval = rs.getObject(j);
                    System.out.print(colval + "  ");
                }
                System.out.println();
            }
            System.out.println("row count:"+ncount);

            rs.close();
            
            stmt.execute("drop table testaaa");//remove that testaaa table.
            
            stmt.close();

            con.close();
        }
        catch( SQLException sqle )
        {
            do
            {
                System.out.println(sqle.getMessage());
                System.out.println("Error Code:"+sqle.getErrorCode());
                System.out.println("SQL State:"+sqle.getSQLState());
                sqle.printStackTrace();
            }while((sqle=sqle.getNextException())!=null);
        }
        catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();

http://www.hxtt.com/paradox/advanced.html (11 / 12) [2008-6-27 12:00:56]



advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        }        
    }
    
    public static void main(String argv[]) {
        test("jdbc:csv:/f:/textfiles/");
        test("jdbc:csv:/_memory_/");
    }
}

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/advanced.html (12 / 12) [2008-6-27 12:00:56]



transaction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Transaction Processing

Index: 

1.  Commit Mode
2.  Isolation Levels
3.  Performance Hints

Commit Mode

There are two modes for managing transactions within JDBC:

●     auto-commit 
●     manual-commit 

java.sql.Connection.setAutoCommit(boolean autoCommit) is used to switch between the two modes. If a connection 
is in auto-commit mode, then all its SQL statements will be executed and committed as individual transactions. 
Otherwise, its SQL statements are grouped into transactions that are terminated by a call to either the method 
java.sql.Connection.commit or the method java.sql.Connection.rollback. By default, new connections are in auto-
commit mode. After an application turns auto-commit off, a transaction is started. The transaction continues until 
either the java.sql.Connection.commit meothod, COMMIT [WORK] sql, the java.sql.Connection.rollback method, 
or ROLLBACK [WORK] sql is called; after that a new transaction is automatically started. 

Calling the commit method ends the transaction. At that stage, HXTT Paradox checks whether the transaction is 
valid and raises an exception if a conflict is identified. If a conflict is encountered, your application should 
determine how to continue, for example whether to automatically retry the transaction or inform the user of the 
failure. A request to rollback a transaction causes HXTT Paradox to discard any changes made since the start of the 
transaction and to end the transaction. 

    connection.setAutoCommit(false); // Explicit transaction handling
 
    Statement stmt = connection.createStatement();
 
    // Loop until transaction successful (or max retry exceeded)
    for(int count=0;; count++) {
        stmt.executeUpdate(yourSQL); 
        try{
            connection.commit(); // Commit transaction 
            break; 
        }catch(SQLException sqe) {
            // Check commit error
            if(sqe.getSQLState().equals("40000")) {
                //You can use sqle.getNextException() to know more information

                // Check number of times the transaction has been attempted
                if (count<3) {
                    continue;

http://www.hxtt.com/paradox/transaction.html (1 / 3) [2008-6-27 12:00:59]



transaction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                }
            }
            throw sqle;
        }
    }

Isolation Levels

An isolation level represents a particular locking strategy employed in the HXTT Paradox to improve data 
consistency. The higher the isolation level, the more locking or snapshot involved, and the more time users may 
spend waiting for data to be freed by another user. The isolation level provided by the HXTT Paradox determines 
whether a transaction will encounter the following behaviors in data consistency:

●     dirty read: A row changed by one transaction can be read by another transaction before any changes in that 
row have been committed. For instance, User 1 modifies a row. User 2 reads the same row before User 1 
commits. User 1 performs a rollback. User 2 has read a row that has never really existed in the database. User 
2 may base decisions on false data. 

●     non-repeatable read: Where one transaction reads a row, a second transaction alters the row, and the first 
transaction rereads the row, getting different values the second time (a "non-repeatable read"). For instance, 
User 1 reads a row but does not commit. User 2 modifies or deletes the same row and then commits. User 1 
rereads the row and finds it has changed (or has been deleted). 

●     phantom read: When one transaction reads all rows that satisfy a WHERE condition, a second transaction 
inserts a row that satisfies that WHERE condition, and the first transaction rereads for the same condition, 
retrieving the additional "phantom" row in the second read. For instance, User 1 uses a search condition to 
read a set of rows but does not commit. User 2 inserts one or more rows that satisfy this search condition, 
then commits. User 1 rereads the rows using the search condition and discovers rows that were not present 
before. 

Isolation Levels and Data Consistency Definition

Isolation Level Dirty Read Non-repeatable Read Phantom Read

None Yes Yes Yes 

Read uncommitted Yes Yes Yes 

Read committed No Yes Yes

Repeatable read No No Yes

Serializable No No No

HXTT Paradox supports only READ UNCOMMITTED isolation level now.

Performance Hints

●     With auto-commit mode, all operations will be done in TRANSACTION NONE level with concurrent 
support. 

●     READ UNCOMMITTED level is always faster than three other transaction levels if you don't do many 
roolback operations. 

http://www.hxtt.com/paradox/transaction.html (2 / 3) [2008-6-27 12:00:59]



transaction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

●     Under REPEATABLE READ or SERIALIZABLE mode, the default CLOSE_CURSORS_AT_COMMIT 
for ResultSet holdability is faster than HOLD_CURSORS_OVER_COMMIT. 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/transaction.html (3 / 3) [2008-6-27 12:00:59]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

  DBAdmin is intergrated enviroment for start,stop,test,manage and monitor the HXTT database software! 
DBAdmin is contained in the all hxtt java database software package ,you can download the package from here 
for test use! How to start this DBAdmin program? For example,if you have download the HXTT Paradox 3.0 
package whose filename is Paradox_JDBC30.jar and save it to c disk,you can run it by java -classpath 
c:/Paradox_JDBC30.jar com.hxtt.sql.admin.Admin you will see this window! 
In default ,this program will product a file named urlconfig.properties locate in user.home enviroment variable.
You can assign the hxtt.urlconfig environment variable to assign the urlconfig.properties path.For example,
java -classpath c:/Paradox_JDBC30.jar -Dhxtt.urlconfig=c:/urlconfig.properties com.hxtt.sql.admin.Admin 

 
This left list is the configed url list,click a url in this list ,you can see this url config information at the right 

window!  This url name is used to 
represented this url config information; this url information text is this url information for start,stop,manage and 
monotor url information, this url information must be a correct embedded jdbc url or remote jdbc url(this sample 
describes only an embedded url service, if you wish to access remote, you should use remote url service, for 

http://www.hxtt.com/paradox/dbadmin.html (1 / 9) [2008-6-27 12:01:27]

http://www.hxtt.com/proddetail.jsp?product=Paradox


dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

instance, jdbc:paradox://localhost:3099//usr/datadir); this auto start is used to assign if this remote url start when 
this dbadmin program start,it is general used to start the hxtt java database server after start the rmi service ! this 
log information is used to assign if log this server access information to a disk file ; Click this View Monitor 
button,you can view the select url monitor window! 

 
This Server Information item in the left list is used to show the general information about this selected url! If the 
server have not started,you can click the right image to start this server, after start this server,you can see four item 
at this left list! This Server Catalogs is used to build a connection and execute some sql at the server,you can see 
the result at this right-bottom window! 

http://www.hxtt.com/paradox/dbadmin.html (2 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 
This Server Controls is used to monitor the physical file which is now accessed by the server! 

http://www.hxtt.com/paradox/dbadmin.html (3 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

¡¡  
This Server Connections is used to monitor the current connections connected this server and their activity. There 
are a connection list at the right top window to show the current connections! At the right bottom window,there 
are three tabpanes! The first is used to show the current sql sentence executed by the selected connection ; this 
second is used to show the logical table accessed by the selected connection; this third is used to show the 
physical table accessed by the selected connection; 

http://www.hxtt.com/paradox/dbadmin.html (4 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 At 
the connections list,select a connection and right-click mouse ,you can close a connection at the popup menu! 

http://www.hxtt.com/paradox/dbadmin.html (5 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 At 
the accessed logical table list ,select a item and right click mouse,you can close the this logical table opened by 
this selected connection! 

http://www.hxtt.com/paradox/dbadmin.html (6 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 At 
the accessed physical table list ,select a item and right click mouse,you can close the physical table ,but you 
should be careful,because this operation will close the physical table no matter this table is accessed by other 
connection! 

http://www.hxtt.com/paradox/dbadmin.html (7 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 It a 
physical table is locked a lot of records and you can only release some records locks,you should select a item at 
the physical table record locks list and right click mouse,click the close menu to release the selected record 
lock,and redo this step to release other record lock until you don't want to do so. 

http://www.hxtt.com/paradox/dbadmin.html (8 / 9) [2008-6-27 12:01:27]



dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x

 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/dbadmin.html (9 / 9) [2008-6-27 12:01:27]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 9. OpenAPI Programming

Index: 

1.  Extend SQL functions
2.  Create/Remove/Start/Stop Server Programmatically
3.  Customer Connection

Extend SQL functions

HXTT Paradox supports more than 210 SQL functions. Please email us if you wish to complement some new SQL functions. HXTT Paradox supports also 
user-defined SQL functions, and you should use only this feature to provide special SQL functions in your project.
First, you need to implement com.hxtt.sql.ExtendedFunctionInterface. 

public interface ExtendedFunctionInterface {
    /**
     * Used to verify whether functionName is supported, and has a correct prarameter 
count.
     * @param functionName the name of function
     * @param parameters the parameter list of function,  which can be null
     * @return value
     * @throws SQLException if has an incorrect parameter number
     */
     public boolean isExtendedFunction(String functionName,Object[] parameters)throws 
SQLException;

    /**
     * Used to evaluate function value.
     * @param functionName the name of function
     * @param values the value list of function, which can be null
     * @return value
     * @throws SQLException if failed to calculate the function
     */
    public Object evaluate(String functionName,Object[] values)throws SQLException;

    /**
     * Used to get the SQL type of the value that is expected to be returned when 
evaluate() is called.
     * @param functionName
     * @return the SQL type or Types.NULL if functionName is supported

http://www.hxtt.com/paradox/openapi.html (1 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

     */
    public int getType(String functionName);

    /**
     * Used to get the SQL types of the parameter values that are expected to be 
returned when evaluate() is called.
     * return null if function hasn't any parameter, or you wish to use the default 
SQL types.
     * use Types.NULL for that specific parameter if you wish to get the default SQL 
type.
     * @param functionName
     * @return the SQL type list or null if functionName is supported
     */
    public int[] getParameterTypes(String functionName);

    /**
     * Used to estimate the maximum number of characters that should be contained in 
a String returned by evaluate(String functionName,Object[] values).
     * Zero is returned if this value object does not represent Types.VARCHAR, 
Types.BINARY, Types.LONGVARCHAR, or Types.LONGBINARY.
     * @param functionName
     * @return maximum size
     * @throws SQLException  if functionName is supported
     */
    public int estimateValueSize(String functionName) throws SQLException;
}

Let us see a sample:

import com.hxtt.sql.ExtendedFunctionInterface;
import java.sql.SQLException;
import java.sql.Types;

/**
 * Show how to complement some sql functions.
 * This sample complements tostring(value) and random() for demo purpose
 */
public class Functions implements ExtendedFunctionInterface {
    public Functions() {
    }

http://www.hxtt.com/paradox/openapi.html (2 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    /**
     * Used to verify whether functionName is supported, and has a correct prarameter 
count.
     * @param functionName the name of function
     * @param parameters the parameter list of function,  which can be null
     * @return value
     * @throws SQLException if has an incorrect parameter number
     */
    public boolean isExtendedFunction(String functionName, Object[] parameters) 
throws SQLException {
        if (functionName.equalsIgnoreCase("tostring")) {
            if (parameters != null && parameters.length == 1) {
                return true;
            }
            else {
                throw new SQLException("Invalid parameter value in tostring 
function");
            }
        }
        else if (functionName.equalsIgnoreCase("random")) {
            if (parameters == null) {
                return true;
            }
            else {
                throw new SQLException("Invalid parameter value in random function");
            }
        }
        return false;
    }

    /**
     * Used to evaluate function value.
     * @param functionName the name of function
     * @param values the value list of function, which can be null
     * @return value
     * @throws SQLException if failed to calculate the function
     */
    public Object evaluate(String functionName, Object[] values) throws SQLException 
{
        if (functionName.equalsIgnoreCase("tostring")) {
            return values[0] + "";

http://www.hxtt.com/paradox/openapi.html (3 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        }
        else if (functionName.equalsIgnoreCase("random")) {
            return new Double(Math.random());
        }
        throw new SQLException("Inner Error:(");
    }

    /**
     * Used to get the SQL type of the value that is expected to be returned when 
evaluate() is called.
     * @param functionName
     * @return the SQL type or Types.NULL if functionName is supported
     */
    public int getType(String functionName) {
        if (functionName.equalsIgnoreCase("tostring")) {
            return Types.VARCHAR;
        }
        else if (functionName.equalsIgnoreCase("random")) {
            return Types.DOUBLE;
        }
        return Types.NULL;

    }

    /**
     * Used to get the SQL types of the parameter values that are expected to be 
returned when evaluate() is called.
     * return null if function hasn't any parameter, or you wish to use the default 
SQL types.
     * use Types.NULL for that specific parameter if you wish to get the default SQL 
type.
     * @param functionName
     * @return the SQL type list or null if functionName is supported
     */
    public int[] getParameterTypes(String functionName) {
        if (functionName.equalsIgnoreCase("tostring")) {
            return new int[] {
                Types.VARCHAR};
        }
        return null;
    }

http://www.hxtt.com/paradox/openapi.html (4 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    /**
     * Used to estimate the maximum number of characters that should be contained in 
a String returned by evaluate(String functionName,Object[] values).
     * Zero is returned if this value object does not represent Types.VARCHAR, 
Types.BINARY, Types.LONGVARCHAR, or Types.LONGBINARY.
     * @param functionName
     * @return maximum size
     * @throws SQLException  if functionName is supported
     */
    public int estimateValueSize(String functionName) throws SQLException {
        if (functionName.equalsIgnoreCase("tostring")) {
            return 20;
        }
        else if (functionName.equalsIgnoreCase("random")) {
            return 8;
        }
        return 10;

    }
}

Then you can use com.hxtt.sql.OpenAPI.registerExtendedFunction("Functions"); to regiester Functions class. Then you can use those user-defined functions 
in SQL. For instance, "select abs(random()),tostring(date) from test;".

Create/Remove/Start/Stop Server Programmatically

If you wish to create,remove,start a server for remote connections from your application, you can call four functions of com.hxtt.sql.admin.Admin class:
public String createServer(String serverConfigName,String serverConfigURL,boolean serverAutoStart,boolean isServerLog,String serverLogFilePath) throws 
Exception
public void removeServer(String serverName)
public void startServer(String serverName)throws SQLException
public void stopServer(String serverName)throws SQLException

For instance:
        try {
            com.hxtt.sql.admin.Admin admin = new com.hxtt.sql.admin.Admin();

            admin.show();//It can be invisible too.

http://www.hxtt.com/paradox/openapi.html (5 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                                                
              String createResult =  
admin.createServer("test1","jdbc:paradox://192.168.1.1:1027/mnt/paradoxfiles",true,true,"/tmp/test1.log"); 
                                        
            if (createResult!=null)
               System.out.println("Failure to create this server for " + 
createResult);
                                
            admin.startServer("test1");

            admin.stopServer("test1");

            admin.stopServer("test4");
            
            admin.removeServer("test1");

        }
        catch (SQLException e) {
            System.out.println(e.getMessage());
        }

Customer Connection

First, let us know the relation of TCP/IP connection and java.sql.Connection. java.sql.Connection objects can share TCP/IP connection. The max number of 
alive TCP/IP connections between one client and one server is 20, but maybe more than 1000 alive java.sql.Connection objects are using those 20 TCP/IP 
connections. One java.sql.Connection object maybe build 0, 1, or more than one TCP/IP connections too.
If you haven't read SSL Connection, please read.
To construct your customer connection, you need to implement two interface(com.hxtt.sql.common.SocketLayer and 
com.hxtt.sql.common.ServerSocketLayer). For SocketLayer, you should have one construction method( public YourSocketLayer(String host, int port)throws 
IOException). For ServerSocketLayer, you should have one construction method( public YourServerSocketLayer(int port, int backlog, InetAddress bindAddr) 
throws IOException). Then you can use:
java -Dhxtt.socketclass=yourPackage.YourServerSocketLayer -cp yourClassPath com.hxtt.sql.admin.Admin
Or
java -Dhxtt.socketclass=yourPackage.YourSocketLayer -cp yourClassPath com.hxtt.sql.admin.Admin
Or
java -Dhxtt.socketclass=yourPackage.YourServerSocketLayer -cp yourClassPath yourApplication
Or
java -Dhxtt.socketclass=yourPackage.YourSocketLayer -cp yourClassPath yourApplication
hxtt.socketclass can be used for client connection property too. The class name should be yourPackage.*Socket* and yourPackage.*ServerSocket* so that 
HXTT ParadoxServer can guess the other class name according to one class name.

http://www.hxtt.com/paradox/openapi.html (6 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

com.hxtt.sql.common.SocketLayer and com.hxtt.sql.common.ServerSocketLayer are pasted below. A simple sample for ip filter, id verfication, and XOR 
encrypt/decrypt, is showed below too. To keep code neat, there's no remark since you can find all functions in java.net.Socket or java.net.ServerSocket. If you 
need help, please email us. 

/******* SocketLayer.java *********/
package com.hxtt.sql.common;

import java.io.IOException;
import java.net.SocketException;
import java.net.InetAddress;

public interface SocketLayer {
    public boolean isClosed();
    public void close() throws IOException;

    public void write(byte b[], int off, int len) throws IOException;
    public void flush() throws IOException;

    public int read(byte b[], int off, int len) throws IOException;

    public int getSoTimeout() throws SocketException;
    public void setSoTimeout(int timeout) throws SocketException;

    public InetAddress getLocalAddress();
    public int getLocalPort();

    public InetAddress getInetAddress();
    public int getPort();
}

/******* ServerSocketLayer.java *********/
package com.hxtt.sql.common;

import java.net.Socket;
import java.io.IOException;
import java.net.SocketException;

public interface ServerSocketLayer{
    public boolean isClosed();
    public void close() throws IOException;

    public SocketLayer accept() throws IOException;

http://www.hxtt.com/paradox/openapi.html (7 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    public void setSoTimeout(int timeout) throws SocketException;

}

/******* XorSocketLayer.java *********/
package demo;

import java.net.Socket;
import java.io.OutputStream;
import java.io.InputStream;
import java.io.IOException;

import java.net.SocketException;
import java.net.InetAddress;

import com.hxtt.sql.common.SocketLayer;

public class XorSocketLayer implements SocketLayer{
    private Socket socket;
    private InputStream in;
    private OutputStream out;

    public XorSocketLayer(String host, int port)throws IOException {
        Socket socket=new java.net.Socket(host, port);

        //just a check demo
        try{
            check(socket);
        }catch(IOException ioe){
            socket.close();
            throw ioe;
        }

        init(socket);
    }

    private void check(Socket socket)throws IOException{
        if(socket.getInetAddress().getHostAddress().startsWith("192.168.10")
           || socket.getInetAddress().getHostAddress().startsWith("127.0.0.1")
            ){
            socket.getOutputStream().write("1234".getBytes("ISO8859_1"));
        }else{
            throw new IOException("Prevent logon based upon IP address");

http://www.hxtt.com/paradox/openapi.html (8 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        }
    }

    protected XorSocketLayer(Socket socket)throws IOException {
        init(socket);
    }

    private void init(Socket socket)throws IOException{
        this.socket = socket;
        try{
            in = socket.getInputStream();
            out = socket.getOutputStream();
        }catch(IOException ioe){
            socket.close();
            throw ioe;
         }
    }

    public boolean isClosed() {
        //Valid for JDK1.4.X
        return socket.isClosed();
//        return false;//For older JDK1.3.X, JDK1.2.X,...
    }

    public void close() throws IOException{
        out = null;
        in = null;
        socket.close();
    }

    public void write(byte b[], int off, int len) throws IOException{
        for(int i=0;i< len;i++){
            out.write( (b[off+i] ^ pattern) & 0xFF);
        }
    }

    public void flush() throws IOException {
        out.flush();
    }

    private static final byte pattern=(byte)0x21;

http://www.hxtt.com/paradox/openapi.html (9 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    public int read(byte b[], int off, int len) throws IOException {
        int numBytes = in.read(b, off, len);

        if (numBytes <= 0)
            return numBytes;

        for (int i = 0; i < numBytes; i++) {
            b[off + i] = (byte) ( (b[off + i] ^ pattern) & 0xFF);
        }

        return numBytes;
    }

    public int getSoTimeout() throws SocketException{
        return socket.getSoTimeout();
    }

    public void setSoTimeout(int timeout) throws SocketException{
        socket.setSoTimeout(timeout);
    }

    public InetAddress getLocalAddress(){
        return socket.getLocalAddress();
    }

    public int getLocalPort(){
        return socket.getLocalPort();
    }

    public InetAddress getInetAddress(){
        return socket.getInetAddress();
    }

    public int getPort(){
        return socket.getPort();
    }

}

/******* XorServerSocketLayer.java *********/
package demo;

import java.io.*;

http://www.hxtt.com/paradox/openapi.html (10 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

import java.net.*;

import com.hxtt.sql.common.SocketLayer;
import com.hxtt.sql.common.ServerSocketLayer;

public class XorServerSocketLayer implements ServerSocketLayer {
    private ServerSocket serverSocket;

    public XorServerSocketLayer(int port, int backlog, InetAddress bindAddr) throws 
IOException {
        this.serverSocket=new ServerSocket(port,  backlog, bindAddr);
    }

    public boolean isClosed(){
        return serverSocket.getLocalPort()<=0;
    }

    public void close() throws IOException{
        serverSocket.close();
    }

    public SocketLayer accept() throws IOException {
        Socket socket=serverSocket.accept();

         //just a check demo
        try{
            check(socket);
        }catch(IOException ioe){
            socket.close();
            throw ioe;
        }

        return new XorSocketLayer(socket);
    }

    private void check(Socket socket)throws IOException{
        if(socket.getInetAddress().getHostAddress().startsWith("192.168.10")
           || socket.getInetAddress().getHostAddress().startsWith("127.0.0.1")
            ){
            byte[] id=new byte[4];
            int count=socket.getInputStream().read(id);
            if(count!=id.length || !"1234".equals(new String(id))){

http://www.hxtt.com/paradox/openapi.html (11 / 12) [2008-6-27 12:01:33]



openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

                throw new IOException("Prevent logon based upon id");
            }
        }else{
            throw new IOException("Prevent logon based upon IP address");
        }
    }

    public void setSoTimeout(int timeout) throws SocketException {
        serverSocket.setSoTimeout(timeout);
    }
}

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/openapi.html (12 / 12) [2008-6-27 12:01:33]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Chapter 7. Scalar Functions and Aggregate Functions

Index: 

1.  Mathematical Functions
2.  Trigonometric Functions
3.  String Functions
4.  Date/Time Functions
5.  Boolean Functions
6.  System Functions
7.  Conversion Functions
8.  Security Functions
9.  Sequence Functions

10.  Miscellaneous Functions
11.  Aggregate Functions

Mathematical Functions

1.  ABS(x): the absolute value
2.  CEIL(x), CEILING(x): the smallest integer that is not less than x
3.  DEGREES(x): converts radians to degrees
4.  EXP(x): exponential, e(2.718...) raised to the power of x
5.  FLOOR(x): the largest integer not greater than argument x
6.  INT(x) : truncates x to nearest integer
7.  LOG(x), LN(x): the natural logarithm
8.  LOG(b,x): returns the logarithm of X for an arbitary base B
9.  LOG10(x): the base 10 logarithm

10.  LOG2(X): the base 2 logarithm
11.  LN(x): the natural logarithm
12.  MOD(y, x): the remainder of y/x, you can use y%x too.
13.  PI(): pi constant, 3.14159265358979323846.
14.  POW(x, y), POWER(x, y): x raised to the power of y
15.  RADIANS(x): converts degrees to radians
16.  RAND([seed]): a random value between 0.0 and 1.0
17.  ROUND(x [,y]): rounds x to nearest integer without y, or round x to y digits after the decimal point.
18.  SIGN(x): returns -1 if x is smaller than 0, 0 if x==0 and 1 if x is bigger than 0.
19.  SQRT(x): the square root
20.  TRUNC(x[,y]), TRUNCATE(x[,y]): truncates x to nearest integer without y, truncates x to y digits after the decimal point

Trigonometric Functions

1.  ACOS(x): the inverse cosine of an angle
2.  ASIN(x): the inverse sine of an angle

http://www.hxtt.com/paradox/function.html (1 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

3.  ATAN(x),ATN(x): the inverse tangent of an angle
4.  ATAN2(x, y): the inverse tangent of x/y
5.  COS(x): the cosine of an angle
6.  COT(x): the cotangent of an angle
7.  SIN(x): the sine of an angle
8.  TAN(x): the tangent of an angle

String Functions

1.  ALLTRIM(string1): removes all leading and trailing blanks in string1
2.  ASC(string1), ASCII(string1): the ASCII code of the leftmost character of the argument
3.  AT(cSearchExpression, cExpressionSearched [, nOccurrence]): returns the beginning numeric position of the first occurrence of a character expression or memo 

field within another character expression or memo field, counting from the leftmost character. If the character expression isn't found, AT( ) returns 0.
4.  BIN(number1): returns a string representation of the binary value of number1, where number1 is a integer(TINYINT, SMALLINT, INT, or BIGINT) number. 

Returns NULL if N is NULL.
5.  BIT_LENGTH(string1): the length of the string str in bits
6.  CHAR_LENGTH(string1), CHARACTER_LENGTH(string1): the number of characters in string1
7.  CHAR(integer), CHR(integer): a character with the given ASCII code
8.  CHAR(integer1,...): interprets the arguments as integers and returns a string consisting of the characters given by the unicode values of those integers. NULL values 

are skipped. 
9.  CHRTRAN(cSearchedExpression, cSearchExpression, cReplacementExpression): Replaces each character in a character expression that matches a character in a 

second character expression with the corresponding character in a third character expression. CHRTRAN( ) translates the character expression cSearchedExpression 
using the translation expressions cSearchExpression and cReplacementExpression and returns the resulting character string. If a character in cSearchExpression is 
found in cSearchedExpression, the character in cSearchedExpression is replaced by a character from cReplacementExpression that's in the same position in 
cReplacementExpression as the respective character in cSearchExpression. If cReplacementExpression has fewer characters than cSearchExpression, the additional 
characters in cSearchExpression are deleted from cSearchedExpression. If cReplacementExpression has more characters than cSearchExpression, the additional 
characters in cReplacementExpression are ignored.

10.  CONCAT(string1, string2): string concatenation, you can use string1+string2 too.
11.  CONCAT(string1, string2,...): returns the string that results from concatenating the arguments. NULL values are skipped.
12.  CONCAT_WS(separator,string1, string2,...): returns the string that results from concatenating the arguments. The first argument is the separator for the rest of the 

arguments. The separator is added between the strings to be concatenated. If the separator is NULL, the result is NULL. The function skips any NULL values after 
the separator argument.

13.  CONV(number1,base): returns a string representation of the first argument in the radix specified by the second argument. The minimum base is 2 and the maximum 
base is 36.

14.  DIFFERENCE(string1, string2): the difference between the sound of string1 and string2
15.  HEX(number1): returns a string representation of the hexadecimal value of number1, where number1 is a integer(TINYINT, SMALLINT, INT, or BIGINT) 

number. Returns NULL if N is NULL.
16.  INITCAP(string1): converts first letter of each word (whitespace-separated) to upper case
17.  INSERT(string1, start1, length1, string2): a string where length1 number of characters beginning at start1 has been replaced by string2
18.  INSTR(string1, string2 [,start1]): the first index (>0:left location, 0:not found) where string2 is found in string1, starting at start1
19.  LCASE(string1): converts string1 to lower case
20.  LEFT(string1, count1): the leftmost count1 of characters of string1
21.  LENGTH(string1), LEN(string1): the number of characters in string1
22.  LOCATE(string1, string2 [,start1]): the first index (>0:left location, 0:not found) where string1 is found in string2, starting at start1
23.  LOWER(string1): converts string1 to lower case
24.  LPAD(string1, length1 [, cPadCharacter]): returns a string from an expression, padded with character(a space by default) to a specified length on the left. If the 

http://www.hxtt.com/paradox/function.html (2 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

string is already longer than length then it is truncated (on the right). 
25.  LTRIM(string1): removes all leading blanks in string1
26.  MID(string1 FROM start1 [FOR length1]), MID(string1, start1 [,length1]): extracts the substring starting at start1 with length length1. MID is a synonym for 

SUBSTRING.
27.  OCT(number1): returns a string representation of the octal value of number1, where number1 is a integer(TINYINT, SMALLINT, INT, or BIGINT) number. 

Returns NULL if N is NULL.
28.  OCTET_LENGTH(string1): the number of octets (8-bit bytes) needed to represent the string1.
29.  PADC(string1, length1 [, cPadCharacter]): returns a string from an expression, padded with character(a space by default) to a specified length on both sides. If the 

string is already longer than length then it is truncated (on the right). 
30.  PADL(string1, length1 [, cPadCharacter]): returns a string from an expression, padded with character(a space by default) to a specified length on the left. If the 

string is already longer than length then it is truncated (on the right). 
31.  PADR(string1, length1 [, cPadCharacter]): returns a string from an expression, padded with character(a space by default) to a specified length on the right. If the 

string is already longer than length then it is truncated (on the right). 
32.  POSITION( s1 IN s2), POSITION(substr,str): location of specified substring
33.  PROPER(STRING1) : returns from a character expression a string capitalized as appropriate for proper names.
34.  REPEAT(string1, count1): repeats string1 count1 times
35.  REPLICATE(string1, count1): same as REPEAT(string1,count1)
36.  REPLACE(string1, string2, string3): replaces all occurrences in string1 of substring string2 with substring string3.
37.  RIGHT(string1, count1): the rightmost count1 of characters of string1
38.  RPAD(string1, length1 [, cPadCharacter]): returns a string from an expression, padded with character(a space by default) to a specified length on the right. If the 

string is already longer than length then it is truncated (on the right). 
39.  RTRIM(string1): removes all trailing blanks in string1
40.  SOUNDEX(string1): a four character code representing the sound of string1
41.  SPACE(nSpaces): returns a character string composed of a specified number of spaces.
42.  STRCAT(string1, string2): string concatenation, you can use string1+string2 too,same as CONCAT.
43.  STRCAT(string1, string2,...): returns the string that results from concatenating the arguments, NULL values are skipped,same as CONCAT.
44.  STRCMP(expr1,expr2): returns 0 if the strings are the same, -1 if the first argument is smaller than the second, and 1 otherwise.
45.  STRCONV(expr1 [, charsetName]): returns a string by decoding the specified array of bytes using the specified charset. Cp895(Czech MS - DOS 895), 

Cp620(Polish MS - DOS 620) and Mazovia are extra supported although JVM doesn't support those. The omitted charsetName is 'ISO8859_1'.
46.  STRTRAN(cSearched, cSearchFor [, cReplacement][, nStartOccurrence] [, nNumberOfOccurrences]): searches a character expression or memo field for 

occurrences of a second character expression or memo field, and then replaces each occurrence with a third character expression or memo field.
47.  STUFF(cExpression, nStartReplacement, nCharactersReplaced, cReplacement): returns a string created by replacing a specified number of characters in a character 

expression with another character expression. cExpression specifies the string expression in which the replacement occurs. nStartReplacement specifies the position 
in cExpression where the replacement begins. nCharactersReplaced specifies the number of characters to be replaced. If nCharactersReplaced is 0, the replacement 
string cReplacement is inserted into cExpression. cReplacement specifies the replacement string expression. If cReplacement is the empty string, the number of 
characters specified by nCharactersReplaced are removed from cExpression. 

48.  SUBSTR(string1, start1 [,length1]): extracts the substring starting at start1 with length length1
49.  SUBSTRING(string1 FROM start1 [FOR length1]), SUBSTRING(string1, start1 [,length1]): extracts the substring starting at start1 with length length1
50.  TRANSLATE(string1, string2, string3): any character in string1 that matches a character in the string2 is replaced by the corresponding character in the string3.
51.  TRIM([[BOTH | LEADING | TRAILING] [removedstring1] FROM] string1): remove the removedstring1 (a space by default) from the start/end/both ends of the 

string1. 
52.  UCASE(string1): converts string1 to upper case
53.  UPPER(string1): converts string1 to upper case
54.  CHARMIRR(string1 [,lDontMirrorSpaces]): mirrors string1 at character level. string1 is the string that should be mirrored. If lDontMirrorSpaces equal to true, 

spaces at the end of string1 will not be mirrored but kept at the end. lDontMirrorSpaces's default value is false, which means to mirror the whole string.
55.  REVERSE(string1[,lDontMirrorSpaces]): mirrors string1 at byte level.

http://www.hxtt.com/paradox/function.html (3 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Date/Time Functions

1.  ADDTIME(expr,expr2): adds expr2 to expr and returns the result. expr is a date or timestamp expression, and expr2 is a time expression. 
2.  CDOW(date) Returns the day-of-the-week(Sunday,Monday, Tuesday, Wednesday, Thursday, Friday,Saturday) from a given date,
3.  CMONTH(date) the name of the month 
4.  CURDATE(): the current date
5.  CURTIME(): the current time
6.  DATE(): the current date
7.  DATE(expr): extracts the date part of the date or timestamp expression expr.
8.  DATEDIFF(expr,expr2): returns the number of days between the start date expr and the end date expr2. expr and expr2 are date or date-and-time expressions. Only 

the date parts of the values are used in the calculation. 
9.  DATETIME(): the current timestamp

10.  DATESERIAL(year,month,day): returns a date value representing a specified year, month, and day.
11.  DATE_ADD(date,INTERVAL expr type), DATE_SUB(date,INTERVAL expr type), ADDDATE(date,INTERVAL expr type), SUBDATE(date,INTERVAL expr 

type). For instance, SELECT DATE_ADD(date1,INTERVAL hour(now())+1 HOUR), adddate(date1,interval 3 hour) FROM test; 

type Value Expected expr Format

MICROSECOND[S] MICROSECONDS

MILLISECOND[S] MILLISECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

DECADE DECADES

CENTURY CENTURYS

MILLENNIUM MILLENNIUMS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS.MICROSECONDS'

http://www.hxtt.com/paradox/function.html (4 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

DAY_SECOND
'DAYS 
HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

12.  DAY(date1), DAYOFMONTH(date1): the day of the month (1-31)
13.  DAYNAME(date1): the name of the day
14.  DAYOFWEEK(date1): the day of the week (1 means Sunday)
15.  DAYOFYEAR(date1): the day of the year (1-366)
16.  EXTRACT(type FROM expr): extracts parts from the date.

type Value Expected Result

MICROSECOND[S] MILLISECOND*1000

MILLISECOND[S] indicats the millisecond within the second. 

SECOND indicats the second within the minute

MINUTE MINUTES

HOUR HOURS

DAY DAYS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

DECADE DECADES

CENTURY CENTURYS

MILLENNIUM MILLENNIUMS

DOW
indicates the day of the week, SUNDAY, MONDAY, 
TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and 
SATURDAY(1~7).

DOY
indicates the day number within the year. The first day of the 
year has value 1. 

WEEK,WOM
indicats the ordinal number of the day of the week within the 
current month.

WOY
indicats the ordinal number of the day of the week within the 
current year.

EPOCH
the current time as UTC milliseconds from the epoch(1970-01-
01 00:00:00).

17.  DOW(date1) get the day of the week, SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY(1~7) 
18.  FROM_DAYS(expr1): given a day number expr1, returns a DATE value.
19.  GOMONTH(expr1,numMonths) : give a date,return the date before or after a number months
20.  HOUR(time1): the hour (0-23)

http://www.hxtt.com/paradox/function.html (5 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

21.  LAST_DAY(date1): takes a date or timestamp value and returns the corresponding date for the last day of the month.
22.  MINUTE(time1): the minute (0-59)
23.  MILLISECOND(time1): the milliseconds from the time or timestamp expression time1.
24.  MICROSECOND(time1): the microseconds from the time or timestamp expression time1. 
25.  MONTH(time1): the month (1-12)
26.  MONTHNAME(date1): the name of the month
27.  NOW(): the current date and time as a timestamp
28.  QUARTER(date1): the quarter (1-4)
29.  SECOND(time1): the second (0-59)
30.  SUBTIME(expr,expr2): subtracts expr2 from expr and returns the result. expr is a date or timestamp expression, and expr2 is a time expression.
31.  SYSDATE(): the current date and time as a timestamp. Asynonym for NOW(). 
32.  TIME(): returns the current system time in 24-hour, eight-character string (hh:mm:ss) format.
33.  TIME(expr): extracts the time part of the time or timestamp expression expr.
34.  TIMEDIFF(expr,expr2) returns the time between the start time expr and the end time expr2. Only the time parts of the values are used in the calculation.
35.  TIMESERIAL(hour,minute,second): returns a Time value representing a specified hour, minute, and second.
36.  TIMESTAMP(expr): returns the date or timestamp expression expr as a timestamp value.
37.  TIMESTAMPADD(interval, count, timestamp1): adds the integer expression count to the date or timestamp expression timestamp1. interval can be 

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, 
SQL_TSI_QUARTER, SQL_TSI_YEAR, FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

38.  TIMESTAMPDIFF(interval, timestamp1, timpestamp2): returns the integer difference between the date or timestamp expressions timestamp1 and timpestamp2 
(timpestamp2-timestamp1). interval can be SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, 
SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, SQL_TSI_YEAR, FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, 
QUARTER, or YEAR.

39.  TO_DAYS(date1): given a date date1, returns a day number.
40.  WEEK(date1), WEEKOFYEAR(date1): the week of this year (1-53) 
41.  YEAR(date1): the year

Boolean Functions

1.  BETWEEN(expression1,expression2,expression3) : determines whether the value of an expression1 lies between the expression2 and expression3, return true or 
false. 

2.  EMPTY(expression): determines whether an expression evaluates to empty or null. The expression you include can be a string, numeric, date, or logical expression. 
EMPTY() returns true, when a string is empty string, spaces, tabs, carriage returns, linefeeds, or any combination of these, numeric value equals to 0, and logical 
expression is false.

3.  ISBLANK(expression): determines whether an expression evaluates to empty or null. The expression you include can be a string, numeric, date, or logical 
expression. ISBLANK() returns true, when a string is empty string or spaces, numeric value equals to null, and logical expression is null.

4.  ISALPHA(expression): determines whether the leftmost character in a character expression is alphabetic.
5.  ISDIGIT(expression): determines whether the leftmost character of the specified character expression is a digit (0 through 9).
6.  ISDIGITS(expression): determines whether a string contains only digits(0 through 9).
7.  ISNULL(expression): determines whether an expression evaluates to null. The expression you include can be a string, numeric, date, or logical expression. If 

expression is NULL, ISNULL() returns true, otherwise it returns false.

System Functions

1.  DATABASE(): the name of the database of this connection

http://www.hxtt.com/paradox/function.html (6 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

2.  USER(): the user name of this connection
3.  DELETED([cTableAlias | nWorkArea]): returns a logical value that indicates whether the current record is marked for deletion. 
4.  RECCOUNT([nWorkArea | cTableAlias]): returns the number of records, which includes all deleted records. 
5.  RECNO([nWorkArea | cTableAlias]): returns the current record number in the current or specified table. nWorkArea specifies the work area number for a table 

open in another work area. cTableAlias specifies the table alias for a table open in another work area.
6.  ROWLOCKED([nWorkArea | cTableAlias]): indicates whether the current row has been locked by process or application.
7.  TABLELOCKED(cTableName): indicates whether a table has been locked by process or application. For instance, select tablelocked('test').
8.  CURRVAL(cTableName, cColumnName): returns the last generated IDENTITY(auto_increment) value for a particuar table. If that table hasn't 

IDENTITY(auto_increment) column, it will return silently null value. Only when there's more than one auto_increment column in a table, it will check 
cColumnName's validity.

Conversion Functions

1.  CAST(expression AS SQLtype1): converts value1 to another data type SQLtype1. SQLtype1 may be SQL_BIGINT(Types.BIGINT), 
SQL_BINARY(Types.BINARY), SQL_BIT(Types.BIT), SQL_CHAR(Types.CHAR), SQL_DATE(Types.DATE), SQL_DECIMAL(Types.DECIMAL), 
SQL_DOUBLE(Types.DOUBLE), SQL_FLOAT(Types.FLOAT), SQL_INTEGER(Types.INTEGER), SQL_LONGVARBINARY(Types.LONGVARBINARY), 
SQL_LONGVARCHAR(Types.LONGVARCHAR), SQL_REAL(Types.REAL), SQL_SMALLINT(Types.SMALLINT), SQL_TIME(Types.TIME), 
SQL_TIMESTAMP(Types.TIMESTAMP), SQL_TINYINT(Types.TINYINT), SQL_VARBINARY(Types.VARBINARY), SQL_VARCHAR(Types.VARCHAR), 
BIGINT(Types.BIGINT), BINARY(Types.BINARY), BIT(Types.BIT), CHAR(Types.CHAR), DATE(Types.DATE), DECIMAL(Types.DECIMAL), 
DOUBLE(Types.DOUBLE), FLOAT(Types.FLOAT), INTEGER(Types.INTEGER), LONGVARBINARY(Types.LONGVARBINARY), 
LONGVARCHAR(Types.LONGVARCHAR), REAL(Types.REAL), SMALLINT(Types.SMALLINT), TIME(Types.TIME), 
TIMESTAMP(Types.TIMESTAMP), TINYINT(Types.TINYINT), VARBINARY(Types.VARBINARY), and VARCHAR(Types.VARCHAR). For instance, 
cast('456' AS SQL_INTEGER),cast('123.456' AS SQL_DECIMAL), and cast('2004-12-23' as sql_date).

2.  CONVERT(value1, SQLtype1): converts value1 to another data type SQLtype1. SQLtype1 may be SQL_BIGINT(Types.BIGINT), 
SQL_BINARY(Types.BINARY), SQL_BIT(Types.BIT), SQL_CHAR(Types.CHAR), SQL_DATE(Types.DATE), SQL_DECIMAL(Types.DECIMAL), 
SQL_DOUBLE(Types.DOUBLE), SQL_FLOAT(Types.FLOAT), SQL_INTEGER(Types.INTEGER), SQL_LONGVARBINARY(Types.LONGVARBINARY), 
SQL_LONGVARCHAR(Types.LONGVARCHAR), SQL_REAL(Types.REAL), SQL_SMALLINT(Types.SMALLINT), SQL_TIME(Types.TIME), 
SQL_TIMESTAMP(Types.TIMESTAMP), SQL_TINYINT(Types.TINYINT), SQL_VARBINARY(Types.VARBINARY), and 
SQL_VARCHAR(Types.VARCHAR). value1 may be any complicated expression. For instance, CONVERT("123",SQL_INTEGER).

3.  CBOOL(expression): returns a Boolean value from an expression.
4.  CBYTE(expression): returns a Byte value from an expression.
5.  CCUR(expression): returns a Currency value with four decimal digits of precision to the right of the decimal from an expression.
6.  CDATE(expression,pattern): returns a Date value according a pattern from an expression. For instance, CDATE('21111947','ddMMyyyy').
7.  CDBL(expression): returns a Double value from an expression.
8.  CINT(expression): returns an Integer value from an expression.
9.  CLNG(expression): returns a Long value from an expression.

10.  CSNG(expression): returns a Float value from an expression.
11.  CSTR(expression): returns a String value from an expression.
12.  CTOD(cExpression): converts a string expression to a date expression.
13.  CTOT(cExpression): returns a timestamp value from a string expression.
14.  DTOC(date1 | timestamp1): returns a string from a date or timestamp expression.
15.  DTOT(dDateExpression): returns a timestamp value from a date expression.
16.  DTOS(date1 | timestamp1): returns a string in a yyyymmdd format from a specified date or timestamp expression.
17.  DTOS(date1 | timestamp1,pattern): returns a string according to a pattern format from a specified date or timestamp expression.
18.  TTOC(tExpression [, 1 | 2]): converts a timestamp expression to a string value of a specified format.
19.  TTOD(tExpression): returns a date value from a timestamp expression.

http://www.hxtt.com/paradox/function.html (7 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

20.  POSIXTOT(expression): returns a timestamp value from a POSIX timestamp value.
21.  TTOPOSIX(tExpression): converts a timestamp expression to a POSIX timestamp value.
22.  STR(nExpression [, nLength [, nDecimalPlaces]]): Returns the character equivalent of a specified numeric expression. nExpression specifies the numeric expression 

STR( ) evaluates. nLength specifies the length of the character string STR( ) returns. The length includes one character for the decimal point and one character for 
each digit to the right of the decimal point. nDecimalPlaces specifies the number of decimal places in the character string STR( ) returns. If you specify fewer 
decimal places than are in nExpression, the extra digits are truncated. STR( ) pads the character string it returns with leading spaces if you specify a length larger 
than the number of digits to the left of the decimal point. STR( ) returns a string of asterisks, indicating numeric overflow, if you specify a length less than the 
number of digits to the left of the decimal point. 

23.  STRZERO(nExpression, nLength[, nDecimals]): convert a numeric expression to a string padded with leading zeros.
24.  VAL(string1): returns a numeric value from a string1 composed of numbers.
25.  COLLATE(string1[,collation]): For multilingual sort in ORDER BY clause. Now collation can be 'DUTCH', 'GERMAN', 'ICELAND', 'SPANISH', 'RUSSIAN', 

'CZECH', 'GREEK', 'SLOVAK', 'POLISH', 'TURKISH', 'HUNGARY', CP850, CP852, CP866, CROATIAN, HEBREW, SWEDISH, and 'MAZOVIA'. Without 
collation parameter, COLLATE function will try to utilize charSet property in Connection properties.

26.  PasToJava(str): get a Java string from a Pascal-style string
27.  JavaToPas(str): get a Pascal-style string from a Java string
28.  PasToJava(str): get a null-terminated string from a Pascal-style string
29.  CToPas(str): get a Pascal-style string from a null-terminated string
30.  CToJava(str): get a Java string from a null-terminated string
31.  JavaToC(str): get a null-terminated from a Java string
32.  BToInt_LE(binary): get int value from bytes with little-endian.
33.  BToInt_BE(binary): get int value from bytes with big-endian.
34.  IntToB_LE(binary): get bytes with little-endian from int value.
35.  IntToB_BE(binary): get bytes with big-endian from int value.
36.  BToShort_LE(binary): get short value from bytes with little-endian.
37.  BToShort_BE(binary): get short value from bytes with big-endian.
38.  ShortToB_LE(binary): get bytes with little-endian from short value.
39.  ShortToB_BE(binary): get bytes with big-endian from short value.
40.  BToLong_LE(binary): get long value from bytes with little-endian.
41.  BToLong_BE(binary): get long value from bytes with big-endian.
42.  LongToB_LE(binary): get bytes with little-endian from long value.
43.  LongToB_BE(binary): get bytes with big-endian from long value.
44.  GetNumber(str[, defaultValue]): return a number value(int, long, double) according to str. If failed to parse, return defaultValue(null is omitted value).
45.  GetInt(str[, defaultValue]): return an int value according to str. If failed to parse, return defaultValue(null is omitted value).
46.  GetLong(str[, defaultValue]): return a long value according to str. If failed to parse, return defaultValue(null is omitted value).
47.  GetDouble(str[, defaultValue]): return a double value according to str. If failed to parse, return defaultValue(null is omitted value).

Security Functions

1.  COMPRESS(content) : Return a compressed byte[]
2.  UNCOMPRESS(compressedBytes) : Return an uncompressed byte[],please don't use it for non-compressed data
3.  ENCRYPT(content,cKey,cCryptMethod): Returns a crypted byte[]. cCryptMethod should be 'DES', 'TRIDES', or 'BLOWFISH' now. ENCRYPT function is used 

for VARBINARY column. Data Encryption Standard (DES) algorithm, adopted by the U.S. government in 1977, is a block cipher that transforms 64-bit data blocks 
under a 56-bit secret key, by means of permutation and substitution. It is officially described in FIPS PUB 46. The DES algorithm is used for many applications 
within the government and in the private sector. Triple-DES is an improvement over DES. It uses three DES keys k1, k2 and k3. A message is encrypted with k1 
first, then decrypted with k2 and encrypted again with k3 (DESencryptiondecryptionencryption). This increases security as the key length effectively increases from 
56 to 112 or 168 (two or three keys may be used in TriDES). The DES key size is 128 or 192 bit and block size 64 bit.

http://www.hxtt.com/paradox/function.html (8 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

4.  DECRYPT(content,cKey,cCryptMethod): Returns a decrypted byte[]. cCryptMethod should be 'DES', 'TRIDES', or 'BLOWFISH' now.
5.  ENCODE(content): Encodes a BASE64 encoding string. 
6.  DECODE(content): Returns a byte[] from a BASE64 string. 
7.  ENCODE(content,cKey,cCryptMethod): Crypts and encodes content. cCryptMethod should be 'DES', 'TRIDES', or 'BLOWFISH'. ENCRYPT function is used for 

VARCHAR column. 
8.  DECODE(content,cKey,cCryptMethod): Decodes and decrypts content. cCryptMethod should be 'DES', 'TRIDES', or 'BLOWFISH' now. 
9.  MD5(string1): Calculates a MD5(Message-Digest Algorithm 5) checksum for the string1.

10.  SHA1(string1): Calculates a SHA-1(Secure Hash Algorithm 1) hash for the string1.
11.  Crypt3(word[, salt]): Returns a hashed string of 13 printable ASCII characters, with the first two characters represent the salt. It can be used to accept typed 

passwords from the user, or attempting to crack Unix passwords with a dictionary.

Sequence Functions

1.  NEXTVAL(cSequenceName): advances sequence and returns new value.
2.  CURRVAL(cSequenceName): returns value most recently obtained with nextval.

Miscellaneous Functions

Function Argument Type Return Type Description

GREATEST(expression1,expression2[,...])

MAX(expression1,expression2[,...])

any numeric, string, 
date/time, or boolean 
type

same as argument type
maximum value 
of all expressions

LEAST(expression1,expression2[,...])

MIN(expression1,expression2[,...])

any numeric, string, 
date/time, or boolean 
type

same as argument type
minimum value of 
all expressions

IF(lExpression, eExpression1, eExpression2)

IIF(lExpression, eExpression1, eExpression2)

 

lExpression specifies the 
logical expression that 
IF()/IIF( ) evaluates.

Returns one of two values depending on the value of a 
logical expression.

If lExpression 
evaluates to true , 
eExpression1 is 
returned. If 
lExpression 
evaluates to false, 
eExpression2 is 
returned.

NVL(expression, value)

IFNULL(expression, value)

any numeric, string, 
date/time, or boolean 
type

Returns one of two values depending on whether 
expression is null.

If expression 
evaluates to null , 
value is returned. 
Otherwise, 
expression is 
returned.

http://www.hxtt.com/paradox/function.html (9 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

INLIST(eExpression1, eExpression2 [, eExpression3 ...])

eExpression1 specifies 
the expression INLIST( ) 
searches for in the set of 
expressions. 
eExpression2 [, 
eExpression3 ...] 
specifies the set of 
expressions to search. 
You must include at 
least one expression 
(eExpression2), and can 
include up to 24 
expressions 
(eExpression2, 
eExpression3, and so 
on).

Determines whether an expression matches another 
expression in a set of expressions.

All the 
expressions in the 
set of expressions 
must be of the 
same data type.

COALESCE(value [, ...])
any numeric, string, 
date/time, or boolean 
type

the type of the first of its arguments that is not null
returns the first of 
its arguments that 
is not null

ELT(numberExpression,value1Expression,[value2Expression,...]) 

numberExpression must 
be a integer type,value 
expression can be any 
type

Returns value depending on the 
numberExpression,value1Expression,...valuexExpression

Returns 
value1Expression 
if 
numberExpression 
= 1, 
value2Expression 
if 
numberExpression 
= 2, and so on. 
Returns NULL if 
N is less than 1 or 
greater than the 
number of 
arguments.

INTERVAL(expression,expr1,expr2,...,exprn) 
any numeric, string, 
date/time, or boolean 
type

integer value

returns 0 if 
expression< 
expr1, 1 if 
expression< expr2 
and so on or -1 if 
expressionN is 
NULL. If 
expression>exprn, 
returns n.

http://www.hxtt.com/paradox/function.html (10 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

TRANSFER (expression, search_1, result_1) TRANSFER 
(expression, search_1, result_1, search_2, result_2) TRANSFER 
(expression, search_1, result_1, search_2, result_2, ...., search_n, 
result_n) TRANSFER (expression, search_1, result_1, default) 
TRANSFER (expression, search_1, result_1, search_2, result_2, 
default) TRANSFER (expression, search_1, result_1, search_2, 
result_2, ...., search_n, result_n, default) 

any numeric, string, 
date/time, or boolean 
type,or null

Returns value depending on the 
expression,search_x,result_x and default

TRANSFER 
compares 
expression to the 
search_x 
expressions and, if 
matches, returns 
result_x. If not, 
returns default, or, 
if default is left 
out, return null . 

expression specifies the 
character, currency, date, 
or numeric expression to 
format.
formatcode specifies one 
format code that 
determine how the 
expression is formatted. 
The following table lists 
the available format 
codes

Format 
Code

Description

@C

CR is 
appended to 
positive 
currency or 
numeric values 
to indicate a 
credit.

@D
act as DTOS 
function.

@E
act as DTOS 
function.

@T

leading and 
trailing spaces 
are trimmed 
from character 
values.

http://www.hxtt.com/paradox/function.html (11 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

TRANSFORM(expression, formatcodes)

@X

db is appended 
to negative 
currency or 
numeric values 
to indicate a 
debit.

@Z

if 0, currency 
or numeric 
values are 
converted to 
spaces.

@(

encloses 
negative 
currency or 
numeric values 
in parentheses.

@^

converts 
currency or 
numeric values 
to scientific 
notation.

@0

converts 
numeric or 
currency 
values to their 
hexadecimal 
equivalents. 
The numeric or 
currency value 
must be 
positive and 
less than 
4,294,967,296.

!
converts a 
character to 
uppercase.

return the formatted string

returns a character 
string from an 
expression in a 
format determined 
by a format code

http://www.hxtt.com/paradox/function.html (12 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

$

adds the 
current 
currency 
symbol 
specified by 
SET 
CURRENCY 
to currency 
and numeric 
values. By 
default, the 
symbol is 
placed 
immediately 
before or after 
the value. 
However, the 
currency 
symbol and its 
placement 
(specified with 
SET 
CURRENCY), 
the separator 
character 
(specified with 
SET 
SEPARATOR) 
and the 
decimal 
character 
(specified with 
SET POINT) 
can all be 
changed.

X

specifies the 
width of 
character 
values. For 
example, if 
cFormatCodes 
is XX? 2 
characters are 
returned.

http://www.hxtt.com/paradox/function.html (13 / 14) [2008-6-27 12:01:42]



function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Y

converts 
logical true 
(.T.) and false 
(.F.) values to 
Y and N, 
respectively.

@!
converts a 
string to 
uppercase.

Aggregate Functions

1.  FIRST(expression): the value of a specified field in the first record, respectively, of the result set returned by a query. Because records are usually returned in no 
particular order (unless the query includes an ORDER BY clause), the records returned by this functions will be arbitrary.

2.  LAST(expression): the value of a specified field in the last record, respectively, of the result set returned by a query. Because records are usually returned in no 
particular order (unless the query includes an ORDER BY clause), the records returned by this functions will be arbitrary.

3.  AVG(expression): the average (arithmetic mean) of all input values.
4.  COUNT(*): the number of input values.
5.  COUNT(expression): the number of input values for which the value of expression is not null.
6.  MAX(expression): the maximum value of expression across all input values. 
7.  MIN(expression): the minimum value of expression across all input values. 
8.  STD(expression): the sample standard deviation of the input values.
9.  STDDEV(expression): the sample standard deviation of the input values.

10.  SUM(expression): the sum of expression across all input values.
11.  GROUP_CONCAT([DISTINCT] expr_list [order_by_clause] [SEPARATOR str_val]): returns a string result with the concatenated non-NULL values from a 

group. It returns NULL if there are no non-NULL values. SEPARATOR is followed by the string value that should be inserted between values of result. The default 
is a comma (','). You can eliminate the separator altogether by specifying SEPARATOR ''. The result will be truncated to the maximum length of 2048 sometimes.

 

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/function.html (14 / 14) [2008-6-27 12:01:42]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

FAQ for HXTT Paradox Packages of type 4 JDBC Driver for Paradox version from 3.0, 3.5, 
4.x, 5.x, 7.x to 11.x

The most recent version of this document can be viewed at here.

Table of Contents

1.  General Questions
2.  Applet Questions
3.  Remote Access Questions and Client/Server Mode Questions
4.  SQL Questions
5.  Index Questions
6.  Performance Questions
7.  Concurrence Questions
8.  Internationalization Questions
9.  Interoperability Questions

General Questions

1. How to know the detailed version information of HXTT Paradox package?
1st way: "java com.hxtt.sql.paradox.ParadoxDriver" will print that information.
2nd way: check that MANIFEST.MF file in jar file.

2. Can I use it in an iSeries OS/400 IBM machine that has Java 1.4 running in it?
The HXTT Paradox packages can run on any platform with Java VM, which includes Microsoft Windows, Novell Netware, 
OS2, UNIX, and LINUX. It supports Personal Java, JDK1.0.X, JDK1.1.X, JDK1.2.X, JDK1.3.X, JDK1.4.X and JDK1.5.X. It 
supports JDBC1.2, JDBC2.0, and JDBC3.0 now.

3. What is difference between the HXTT Paradox Package, Embedded Package, and Remote Access Package? Can I get 
some sample code to use the HXTT Paradox?
The HXTT Paradox supports Embedded and Remote Access. HXTT Paradox Package includes a Database GUI manager. If 
you're accessing the local data, you can use the HXTT Paradox Package or Embedded Package. If you're accessing the remote 
data, you can use the HXTT Paradox Package or Remote Access Package. There is no any difference for your code to use 
anyone of three packages. Please download the demo package from here.

4. What causes the 'No suitable driver' SQLException?
This error usually occurs during a call to DriverManager.getConnection(). The cause can be failing to load the appropriate 
JDBC driver before calling getConnection(), or specifying an invalid JDBC URL that isn't recognized by your JDBC driver. If 
you're using a trial version, you will get "No suitable driver" SQLException, and "Evaluation period over" after using about 30 
days. The HXTT Paradox driver's name is com.hxtt.sql.paradox.ParadoxDriver, and its JDBC URL:

        Embedded:
                jdbc:paradox:[//]/[DatabasePath][?prop1=value1[;prop2=value2]] (You 
can omit that "//" characters sometimes)
                        For example:
                                "jdbc:paradox:/."
                                "jdbc:paradox:/c:/data"
                                "jdbc:paradox:////usr/data" for unix or linux:
                                "jdbc:paradox:/./data"

http://www.hxtt.com/paradox/faq.html (1 / 11) [2008-6-27 12:01:48]

http://www.hxtt.com/download.jsp?product=paradox


faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        Access by Paradox Server: Skip it if you don't use TCP, RMI or JINI.
                jdbc:paradox://host:port/[DatabasePath]
                        For example: "jdbc:paradox://domain.com:3099/c:/data" if one 
ParadoxServer is run on the 3099 port of domain.com

5. How to setup Paradox url on the Novell Server?
Paradox driver can run on Novell server. You can use directly access or ParadoxServer to visit your data on Novell server. If 
your Paradox files is at sys:/java/yourdata, the direct URL should be:
jdbc:paradox:///sys:/java/yourdata 
or
jdbc:paradox:////java/yourdata

6. I got "java.io.IOException: Permission denied" sometimes for my SELECT query.
Please figure out what directory Java's java.io.tmpdir system property points to, and make sure that directory is writable by the 
user that runs your Java applications, otherwise you should set tmpdir properity in Connection properity to a writable directory. 
tmpdir properity indicates whether set a temp directory, Default: the value of JVM's "java.io.tmpdir" property. If that value is 
incorrect, uing the directory of JDBC url. 

7. When I used jdbc:paradox:/<DatabasePath>, the connection's schema was empty. "create catalog if not exists 
paradoxfiles". What is Catalog?
Paradox's schema is always empty. You can use catalog to query subdirectory. Catalog means a directory, which contains 
some Paradox files. 

8. Can HXTT Paradox support JDK 1.0.2?
Yeah. You need to download JDBC 1.22 from the Sun's JDBC download page and add JDBC1.22 into JDK 1.0.2. HXTT 
Paradox hasn't be tested on JDK1.0.X since we have not received such a complement request from our users. If you meet any 
problem, please let us know.

Applet Questions

1. I already configured the .java.policy for my applet, but I continue with problems of "acess denied".
For instance, you're using "jdbc:paradox:/C:/test", and grant codeBase "file:/C:/test" in your policy file, but your applet is 
running from "D:\sample\CargaStatApplet.html". You should grant codeBase "file:/D:/sample", not "file:/c:/test".

2. http://localhost:8080/jdbcapplet.html, the applet started but returns a Classnotfound 
com.hxtt.sql.paradox.ParadoxDriver error in the gui list.
Please add a codebase tag. For instance, "<applet code="jdbcapplet.class" 
codebase="Paradox_Remote_Access_JDBC20.jar"></applet>". The Paradox_Remote_Access_JDBC20.jar should be at the 
same directory of jdbcapplet.html.

Remote Access Questions and Client/Server Mode Questions

1. Client/Server mode question: The data directory is not in the IBM machine where the Java program should run, but 
instead those Paradox files are in another machine with Windows operating system.
com.hxtt.sql.admin.Admin provides a GUI manger for Paradox server. For instance, you wish to provide JDBC3.0 remote data 
access. Please use "java -cp yourdirectrory/Paradox_JDBC30.jar com.hxtt.sql.admin.Admin" to start GUI manager, and add a 
url setting of '"jdbc:paradox://10.32.90.48:" + 8029 +"/"+databaseDirectory' on your host of 10.32.90.48(just an IP sample), 
then click Start button. Third, you can use 'String url =
"jdbc:paradox://10.32.90.48:" + 8029 +"/"+databaseDirectory;' to visit your Paradox database from your IBM machine. If 
you're running that GUI manager on "yourNT.com" host to visit "c:/database" directory, you can use 
"jdbc:paradox://yourNT.com:8029/c:/database" on your web application. 

http://www.hxtt.com/paradox/faq.html (2 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

jdbc:paradox://yourNT.com:8029/c:/database?user=oneuser&password=onepassword can provide a simply user/password 
verification for client/server mode. If you wish to write a secure Paradox server for some sensitive information, embedded 
encrypt/decrypt functions can help you.

2. Remote access through map network drive question: How to remote access Paradox data without ParadoxServer?
You can share your remote directory which contains your data files, then map it to a local driver.
For Windows: You can connect remote Paradox database by sharing the directory and map it to local drive. You should disable 
the OPLOCKS of your Samba/NT/2000 server. This is done by manipulating the following registry key:
\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters
EnableOplocks REG_DWORD 0 or 1
Default: 1 (true)
For Linux: You can use mounting. One user uses Samba to maped NTFS partitions in Linux servers, and Paradox driver works 
normally like mapping any mount point in Linux.
For Novell: You can map NCP directory as driver or mount NCP directory.

3. Remote access through SAMBA protocol question: How to let my servlet on Linux to access over 300 hundred shared 
folders that all are on Windows boxes

You need to use SAMBA table, which needn't to map or mount driver. 

4. Remote access through http/https/ftp protocol question: How to let my program to fetch data daily from our web 
host?

You need to use url database, which supports http protocol, https protocol, and ftp protocol. 

5. Remote access through UNC path question: Can I setup only one datasource to access four servers for my Cold 
Fusion?
To access one unc path, you can use jdbc:paradox:/\\PC17\c$\values or jdbc:paradox:/\\PC17\val.
To access four unc pathes in the same connection, you need to use a free JDBC url, "jdbc:paradox:/" or "jdbc:paradox:///". 
Then you can use some full UNC path names in SQL to visit your four servers where your Java VM has right to access.. For 
instance:

  select * from \\amd2500\e$\paradoxfiles\test;
  select * from "\\amd2500\d$\paradoxiles".test;
  select * from ".".test;
  

6. I can't get the com.hxtt.sql.admin.Admin runnig for internet --> intranet 
HXTT Paradox supports port mapping and NAT route. Let HXTT Paradox listening a port on the database server, and modify 
your route table or NAT table to map an external port to that internal port. You can use "start java -
Djava.security.policy=policy com.hxtt.sql.admin.Admin" to start GUI manager. You should add a remote url, for instance, 
jdbc:paradox://localhost:8029/d:/dbffiles, and click Start button to start that server. Then on your internet client side, you can 
use jdbc:paradox://externalIP:8029/d:/dbffiles to access your intranet host. externalIP means an external IP or domain name 
address of your gateway or database server.
BTW, except for TCPServer protocol, HXTT Paradox can use also RMIServer protocol. For instance, you have used "start 
rmiregistry 1099 -J-Djava.security.policy=yourPolicyFile" to startup your rmi service. Then you can use 
jdbc:paradox://localhost:1099/d:/dbffiles?serverType=RMIServer to let HXTT Paradox bind remote service in registry. The 
key is use "java -Djava.security.policy=policy -Djava.rmi.server.hostname=externalIP com.hxtt.sql.admin.Admin 
RMISERVER 8029" to start your server. RMIServer protocol is slower much than the default TCPServer protcol.

7. I would like to start a server (TCP) from our application, instead of DBAdmin. I need to be able to programmatically 

http://www.hxtt.com/paradox/faq.html (3 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

tell the application which profile to start.
Please read Start/Stop Server Programmatically. 

8. Is there a way to specify a file path in the url that will connect to a mapped drive in Windows 2000. ie drive 
\\gomer\pyle\db which is mapped to f drive on the server.
Paradox driver can work with mapped driver, and you should use "jdbc:paradox:/f:" to access your data. 

Note: If you're using a database file through a UNC path or a mapped drive of Windows, there is a Windows Security 
restriction. If you run ColdFusion (Tomcat, or tanuki sw wrapper) as a service on Windows, it operates by default as System, 
and cannot access directories on a remote system or mapped drive; to resolve this issue, do not run ColdFusion (Tomcat, or 
tanuki sw wrapper) using the local system account.

9. When I click Start button to start a remote service, I get a security excaption: access denied 
(java.net.SocketPermission 127.0.0.1:8029 connect,resolve)
You have to enable java.net.SocketPermission right in your policy file if you
run a Paradox server. Please read
file:///yourdriver|/jdk1.2/docs/guide/security/PolicyFiles.html for more
information about policy file. It is unnecessary to know the specific content
of a policy file, since you can use policy tool to create and maintain your
policy files. Please read
file:///yourdriver|/jdk1.2/docs/tooldocs/win32/policytool.html for policy tool.

10. How to start remote service as MS Windows service and Linux(Solaris) Daemon?
Please read Run HXTT ParadoxServer as Windows Service or Linux(Solaris) Daemon. 

11. How to start remote control when ParadoxServer is running as Windows service or Linux(Solaris) Daemon?
You can use "java com.hxtt.sql.admin.Admin TCPCLIENT [host:]port [remoteControlPassword]" to start your remote control.

SQL Questions

1. I need to use tables stored in a subdirectory.
table-name: [catalog.]tableName 
For instance, you have many Paradox files on c:\data. You can use "jdbc:paradox:/c:/data" as JDBC url. Then you can use 
"select * from subdirectory1.table1" to visit table1 file at subdirectory1. For instance, "select tableAlias.* from 
"sales/2004/04".sale as tableAlias" can access sale table at "c:\data\sales\2004\04".

2. I can't use "select RIGHT from deldob"
RIGHT is a reserved SQL keyword. "variableName", [variableName] or {v 'variableName'} is used to quote those columns 
which use reserved keyword, so that you should use "RIGHT" or {v 'RIGHT'} to quote the RIGHT field, for instance, select {v 
'RIGHT'},'other' from states where "RIGHT"=32. HXTT Paradox supports using DATE, TIME, TIMESTAMP, GROUP, 
ORDER, KEY, DESC, UPDATE directly in SQL, although they're reserved words too.

3. Can I get an example on how to do a query involving a boolean value. eg. " Select * from tableName where exported 
= true", where exported is a boolean column in a Paradox file.
Supports. You can use "select * from tableName where exported" too. All of NOT, AND, and OR operation are supported.

4. How to specify dates?
Please use SQL Escape Syntax, a date is specified in a JDBC SQL statement with the syntax {d `yyyy-mm-dd'} where yyyy-
mm-dd provides the year, month, and date, e.g. 1996-02-28. There are analogous escape clauses for TIME and TIMESTAMP 
type: {t `hh:mm:ss'} and {ts `yyyy-mm-dd hh:mm:ss.f...'}. The fractional seconds (.f...) portion of the TIMESTAMP can be 

http://www.hxtt.com/paradox/faq.html (4 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

omitted. For instance,{d '1999-11-01'} and {ts '3999-03-24 00:59:23.22222'}. You can use PreparedStatement.setDate to set 
date columns too.

5. How to handle date range selection, e.g. SELECT * FROM CALLS WHERE START >= '2001-01-01' AND END <= 
'2002-01-01'
Although the HXTT Paradox supports "SELECT * FROM CALLS WHERE START >= '2001-01-01' AND END <= '2002-01-
01'", but that sql syntax is unadvisable. Please use SQL Escape Syntax, {d `yyyy-mm-dd'} and {ts `yyyy-mm-dd 
hh:mm:ss.f...'}, for Date and timestamp type according to JDBC standard. You can learn more about Escape Syntax at 
file:///yourdriver|/jdk1.2/docs/guide/jdbc/spec/jdbc-spec.frame11.html . You should use "select * from calls where start>={d 
'2001-01-01'} and end <={d '2002-01-01'}". 

6. Can {d '2999-11-21'}={ts '2999-11-21 23:22:20.3335'} and {t '23:22:20'}={ts '1999-01-01 23:22:20.333'}?
Supports.

7. I think this one is for use functions {fn abs(TEST.int1)}
You can use abs(TEST.int1) too. HXTT Paradox supports more than 210 functions.

8. Update table_name set (fieldname1=X, fieldname2=X2, ....) where primary_index='blah' throws a parse exception.
You should use "update table_name set fieldname1=X, fieldname2=X2, .... where primary_index='blah'".

9. How to delete all deleted records permanently?
"PACK TABLE [IF EXISTS] table_name" will pack database. 
"TRUNCATE TABLE [IF EXISTS] table-name" will zap database.

Index Questions

1. How to rebuilding index in case of corrupted index?
REINDEX {ALL | indexFileName[,indexfileName2,...]} ON table-name

2. I receive 1 record back, however there should be 8 records returned.My SQL is "SELECT * FROM Schshift@brian 
WHERE PSCHED='0001092478'"
You should have a UNIQUE index restriction on your PSCHED column in your index file. You should use "CREATE INDEX 
PSCHED on Schshift (PSCHED)", not "CREATE INDEX PSCHED on Schshift (PSCHED UNIQUE)". Then you can get all 
ten records. Paradox driver will use index to speed up the query which contains some index expressions.

3. We tried to set a PRIMARY KEY constraint with: create unique index PROVA on PROVA (COD)
You should try "CREATE INDEX prova ON prova (cod PRIMARY KEY).

4. I have a table that lists an index using: STR(ClassLink,4,0)+STR(StuLink,5,0) as the column_name. I want to join it 
to another table that has an index that uses the same columns... What should the join statement look like in order to 
take advantage of the indexes?
For instance, you can use "select * from ACLS3295,AGRD3295 where 
STR(ACLS3295.ClassLink,4,0)+STR(ACLS3295.StuLink,5,0)='1234abcde' and 
STR(AGRD3295.ClassLink,4,0)+STR(AGRD3295.StuLink,5,0)='5678abcde'", or "select * from ACLS3295 as a,AGRD3295 
as b where STR(a.ClassLink,4,0)+STR(a.StuLink,5,0)='1234abcde' and 
STR(b.ClassLink,4,0)+STR(b.StuLink,5,0)='5678abcde'".

Performance Questions

1. What is the most efficient methodto insert records in a table, to use an updatable RecordSet or to use a 
PreparedStatement? 

http://www.hxtt.com/paradox/faq.html (5 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

PreparedStatement is smally quicker than updatable RecordSet. An updatable RecordSet is quicker than PreparedStatement if 
you insert into more than 200 columns with constant values. It can only cope with constant values. PreparedStatement can 
cope with complicated expressions so that you can insert timestamp, function, ResultSet, and so on. 

2. "select count(*) from table" are worked a long time for large tables.
You should use "select reccount() from table" to get the number of records. Count(*) sums always up all records except deleted 
row.

3. Are there any data row count, data volume, memory minimums, maximums imposed when using the HXTT 
Paradox?
No limitation. The HXTT Paradox supports to join query big databases with DISTINCT, GROUP BY, and ORDER BY.

Concurrence Questions

1. Does HXTT Paradox support multi-user access?
The HXTT Paradox supports multi-user access, record lock, and table lock.

2. Is there any way to lock/unlock record programatically.
We have provided a _LockFlag_ virtual column as row lock flag. You can know it from Set Record Lock Manually. 

Internationalization Questions

1. Can the HXTT Paradox support Czech MS - DOS 895?

The HXTT Paradox supports all codepage, multilingual collation sequence, and unicode character set. Cp895(Czech MS - 
DOS 895), Cp620(Polish MS - DOS 620) and Mazovia are extra supported although JVM doesn't support those.

2. Do you have a solution for character translation to the right encoding?
The HXTT Paradox supports CharacterEncoding. Please use charSet property.

//Default: null
//You can find a Supported Encodings list of 
files:///yourdriver/jdk1.2/docs/guide/internat/encoding.doc.html
//Extra supports:
// Cp895 is supported by HXTT Paradox driver. //Czech MS - DOS 895
// Cp620 is supported by HXTT Paradox driver. //Polish MS - DOS 620
// Mazovia is supported by HXTT Paradox driver. //Polish 
Properties properties=new Properties();
properties.setProperty("charSet","sv_SE");
Connection con = DriverManager.getConnection(url,properties);

3. While reading encrypted data in a Paradox file using u'r parser in java. The data retreived is different from the data 
in the Paradox file, certain characters are read as ? marks.( the encryption is done using ASCII values ).
You can use ResultSet.getBytes(int columnIndex), not ResultSet.getString(int columnIndex) and ResultSet.getObject(int 
columnIndex), to get your encrypted data, since your encrypted data is binary stream.

4. When they insert accented characters, it comes out different at the Java end. There seem to be some character set 
conversion problems. Is there a way to solve that?
You can use ResultSet.getBytes() and ResultSet.setBytes() to avoid CharacterEncoding.

http://www.hxtt.com/paradox/faq.html (6 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Interoperability Questions

1. How to set up HXTT Paradox with Tomcat4.1 as PoolableConnection?
This sample shows three PoolableConnections ways through Database Connection Pool (DBCP) Configurations and JNDI 
Resources( You should read JNDI Datasource HOW-TO and JNDI Resources HOW-TO also.):
In server.xml:

<Context path="" docBase="ROOT" debug="5" reloadable="true" crossContext="true">

    <Resource name="jdbc/testparadoxPool1" auth="Container" 
type="javax.sql.DataSource"/>   
        <ResourceParams name="jdbc/testParadoxPool1">
                <parameter>
                        <name>factory</name>
                        <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
                </parameter>
                        
                <parameter>
                        <name>maxActive</name>
                        <value>50</value>
                </parameter>
        
                <parameter>
                        <name>maxIdle</name>
                        <value>10</value>
                </parameter>
        
                <parameter>
                        <name>maxWait</name>
                        <value>10000</value>
                </parameter>
        
                <parameter>
                        <name>username</name>
                        <value></value>
                </parameter>
                
                <parameter>
                        <name>password</name>
                        <value></value>
                </parameter>
        
                <parameter>
                        <name>driverClassName</name>
                        <value>com.hxtt.sql.paradox.ParadoxDriver</value>
                </parameter>    
                
                <parameter>
                        <name>url</name>        
                        <value>jdbc:paradox:///d:/paradoxfiles</value>
                </parameter>
    </ResourceParams>

http://www.hxtt.com/paradox/faq.html (7 / 11) [2008-6-27 12:01:48]

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-resources-howto.html


faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

    <Resource name="jdbc/testParadoxPool2" auth="Container" 
type="com.hxtt.sql.HxttConnectionPoolDataSource"/>      
        <ResourceParams name="jdbc/testParadoxPool2">
                <parameter>
                        <name>factory</name>
                        <value>org.apache.naming.factory.BeanFactory</value>
                </parameter>
                        
                <parameter>
                        <name>url</name>
                        <value>jdbc:paradox:///d:/paradoxfiles</value>
                </parameter>    
        
                <parameter><name>username</name><value></value></parameter>             
                <parameter><name>password</name><value></value></parameter>             
                <parameter><name>host</name><value></value></parameter>
                <parameter><name>port</name><value>8029</value></parameter>

    </ResourceParams>

    <Resource name="jdbc/testParadoxPool3" auth="Container" 
type="com.hxtt.sql.HxttConnectionPoolDataSource"/>      
        <ResourceParams name="jdbc/testParadoxPool3">
                <parameter>
                        <name>factory</name>
                        <value>com.hxtt.sql.HxttObjectFactory</value>
                </parameter>    
                <parameter>
                        <name>url</name>
                        <value>jdbc:paradox:///d:/paradoxfiles</value>
                </parameter>    
        
                <parameter><name>username</name><value></value></parameter>             
                <parameter><name>password</name><value></value></parameter>             
                <parameter><name>host</name><value></value></parameter>
                <parameter><name>port</name><value>8029</value></parameter>
    </ResourceParams>

</Context>

Then you can use the below code to test those PoolableConnections:

        Context initContext = new InitialContext(); 
        Context envContext = (Context)initContext.lookup("java:/comp/env"); 
        
        DataSource ds1 = (DataSource)envContext.lookup("jdbc/testParadoxPool1"); 
        Connection conn1 = ds1.getConnection();
        out.println("testParadoxPool1 OK:)<br/>");
        Statement stmt1 = conn1.createStatement();
        ResultSet rs1 = stmt1.executeQuery("select * from test");
        if(rs1.next())
           out.println(rs1.getString(1)+":)<br/>");

http://www.hxtt.com/paradox/faq.html (8 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        rs1.close();  
        stmt1.close();
        conn1.close(); 
        
        
        DataSource ds2 = (DataSource)envContext.lookup("jdbc/testParadoxPool2"); 
        Connection conn2 = ds2.getConnection();
        out.println("testParadoxPool2 OK:)<br/>");
        Statement stmt2 = conn2.createStatement();
        ResultSet rs2 = stmt2.executeQuery("select * from test");
        if(rs2.next())
           out.println(rs2.getString(1)+":)<br/>"); 
        rs2.close();  
        stmt2.close();
        conn2.close();
        
        DataSource ds3 = (DataSource)envContext.lookup("jdbc/testParadoxPool3"); 
        Connection conn3 = ds3.getConnection();
        out.println("testParadoxPool3 OK:)<br/>");
        Statement stmt3 = conn3.createStatement();
        ResultSet rs3 = stmt3.executeQuery("select * from test");
        if(rs3.next())
           out.println(rs3.getString(1)+":)<br/>"); 
        rs3.close();  
        stmt3.close();
        conn3.close();

If you use org.apache.commons.dbcp.BasicDataSource, but get "Cannot create PoolableConnectionFactory" Error, you should 
check your commons-pool-1.x.jar and commons-dbcp-1.*.jar file in $TOMCAT/common/lib directory to see whether two files 
have the same version. DBCP v1.2 requires Pool v1.2 so that you should update Pool v1.1 from the tomcat website.

If you wish to add more Connection properity, you should use connectionProperties, for instance:

<parameter>
<name>connectionProperties</name>
<value>charSet=Cp737</value>
</parameter>

2. How to set up HXTT Paradox with vqServer 1.9.55 as web server?
The key is to use an absolute path as Java libraries' location, and restart vqServer after modified Java libraries.
For instance, your vqServer is installed at C:\vqServer\.
1. Please use http://yourhost:9090/ to visit your administration server.
2. Click on Java libraries in the vqServer control centre menu (http://yourhost:9090/admin?action=libraries&serial=14)
3 Click New library (http://yourhost:9090/admin?lib=New_library&action=edit)
4. Enter C:\vqServer\classes\Paradox_JDBC20.jar as location value, Paradox Driver as Description value, then click OK 
button.
5. Please copy Paradox_JDBC20.jar into C:\vqServer\classes directory.
6. Please copy ex01.class into C:\vqServer\servlets\servlets 
7. Stop and restart vqServer
8. Please use http://yourhost/servlet/yourServlets to get your result.

3. How to set up HXTT Paradox with Coldfusion MX 6.1 Application Server?

http://www.hxtt.com/paradox/faq.html (9 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

For instance,your Coldfusion MX is installed at C:\CFusionMX\, and wish to use Paradox_JDBC30.jar.
1. Please copy Paradox_JDBC30.jar into C:/CFusionMX/wwwroot/WEB-INF/classes/.
2. Use http://yourhost:8500/CFIDE/administrator/index.cfm to enter the CFMX Administrator.
3. Go to the "Java and JVM" of Server Settings, http://yourhost:8500/CFIDE/administrator/settings/jvm.cfm page, and enter 
the full path, C:/CFusionMX/wwwroot/WEB-INF/classes/Paradox_JDBC30.jar, in the Class Path. Then, click "Submit 
Changes".
4. Restart the CFMX Service.
5. Please go back to the administrator page, and go to the "Data Sources" of Data & Services, 
http://yourhost:8500/CFIDE/administrator/datasources/index.cfm page, and enter the name for the new datasource, for instance 
"ParadoxTest", and select "Other" for the driver. Then Click "Add".
6. Enter the datasource information. JDBC URL is always in the format jdbc:paradox:[//[host:port]]/[DatabasePath], for 
instance jdbc:paradox:/c:/data. Driver class is always com.hxtt.sql.paradox.ParadoxDriver. Driver name is used to identify the 
driver in the datasources view, and you can use Paradox. Username and password are not required. They can also be specified 
in the cfquery tag (but datasource verification will fail if you don't enter them). Description is not required.
7. If you wish to set more connection properties, please click "Show Advanced Setting" button, then in the textbox for 
"Connection String", you can input "delayedClose=15;maxCacheSize=6144;lockTimeout=2000;" (three properites are just a 
demo, not necessary). Note: Connection String seems abnormal now. You should have to put Connection String into JDBC 
URL, for instance: jdbc:paradox:/c:data?delayedClose=15;maxCacheSize=6144;lockTimeout=2000;
8. Lastly, please press "Submit" to finalize the entered data.
9. You can find edit.cfm and edit_action.cfm sample in demo pacakge.

4. HXTT Paradox with If you run ColdFusion (Tomcat, or alexandria sw and tanuki sw wrapper) on Windows 2000 
and Windows XP Pro does not work on mapped drives. 

Note: If you're using a database file through a UNC path or a mapped drive of Windows, there is a Windows Security 
restriction. If you run ColdFusion (Tomcat, or tanuki sw wrapper) as a service on Windows, it operates by default as System, 
and cannot access directories on a remote system or mapped drive; to resolve this issue, do not run ColdFusion (Tomcat, or 
tanuki sw wrapper) using the local system account.

The service(For instance, ColdFusion MX Application Server, ColdFusion MX 7 Application Server, or Apache Tomcat) built 
by ColdFusion (Tomcat, or tanuki sw wrapper) can not access the share directory at other machine by default. But you can do 
as follows to solve this problem:
1. Right click the service built by ColdFusion (Tomcat, or tanuki sw wrapper) in service manager, and click the property menu.
2. On the open window,select the login tab, click this account radio box, and click the browse button.
3. Select the administrator account(it seems that you should select the administrator account), input the correct password in the 
password textbox and confirm password textbox.
4. Restart this service, you can find this service can access the share directory at other machine.

5. How to resolve 'DataSet has no unique row identifiers.' issue in JBuilder's QueryDataSet?
You can use _rowid_, a virtual column to avoid that issue, For instance: 

        //...
        queryDataSet = new QueryDataSet();
                //...
                queryDataSet.setMetaDataUpdate(MetaDataUpdate.ALL-
MetaDataUpdate.ROWID-MetaDataUpdate.TABLENAME);

        queryDataSet.setQuery(new QueryDescriptor(database, "select _rowid_,* from 
test", null, true,
                Load.ALL));
        queryDataSet.open();

http://www.hxtt.com/paradox/faq.html (10 / 11) [2008-6-27 12:01:48]



faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

        queryDataSet.setTableName("test");
        queryDataSet.setRowId("_rowid_", true);
                //...

6. How to set HXTT Paradox with WebSphere Application Server?
You can download a pdf guide from here.

7. How to set HXTT Paradox with Hibernate?
You should download support package and sample from here.

8. How to set HXTT Paradox Data Source with Oracle Application Server 10G?
You should read guide at Oracle Application Server 10G(v10.1.3) and Oracle Application Server 10G(v10.1.2.02).

9. How to set HXTT Paradox Data Source with JBoss Application Server 4.0.1?
For instance, 

<datasources>
  <local-tx-datasource>
    <jndi-name>TestData</jndi-name>
    <connection-url>jdbc:paradox:////data</connection-url>
    <driver-class>com.hxtt.sql.paradox.ParadoxDriver</driver-class>
    <connection-property name="delayedClose">-1</connection-property>
    <user-name/>
    <password/>
    <min-pool-size>5</min-pool-size>
    <max-pool-size>20</max-pool-size>
    <idle-timeout-minutes>5</idle-timeout-minutes>
  </local-tx-datasource>
</datasources>

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/faq.html (11 / 11) [2008-6-27 12:01:48]

http://www.hxtt.com/test/websphere_sample.pdf
http://www.hxtt.com/hibernate.html
http://www.hxtt.com/test/oracleappserv/oracle10g.htm
http://www.hxtt.com/test/oracleappserv1012/


history.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Released Version Log 

Latest feature: 

●     v4.0.036 supports GROUP_CONCAT function.
●     v4.0.034 supports lower(upper) function in LIKE expression.
●     v4.0.001 supports INTO variable[,...] for SELECT sql.
●     v4.0.001 supports SET variable = expression [,...].
●     v4.0.001 supports DECLARE Local Variables.

2007-10-29 Paradox v3.1 JDBC1.2 Package(892KB) JDBC2.0 Package(883KB) JDBC3.0 
Package(916KB) 

●     v4.0.001 supports INTO variable[,...] for SELECT sql.
●     v4.0.001 supports SET variable = expression [,...].
●     v4.0.001 supports DECLARE Local Variables.
●     v3.1.084 replaced "? Expression" with "SELECT select_list".
●     v3.1.083 provides CURRVAL(cTableName, cColumnName) to fetch the last generated 

IDENTITY(auto_increment) value for a particuar table.
●     v3.1.080 provides SHA1 function besides MD5 and Crypt3.
●     v3.1.068 changed the visibility of columns in JOIN table with parentheses from invisible 

to visible.
●     v3.1.068 supports JOIN and subquery in PIVOT and UNPIVOT.
●     v3.1.057 supports seamlessly https url database in jdbc url and sql.
●     v3.1.051 fixed a bug for utilizing index on LIKE '%'.
●     v3.1.010 supports AUTO_INCREMENT in CREATE TABLE sql
●     v3.1.001 supports SAMBA table, which needn't to map or mount driver.

2007-01-11 Paradox v3.1 JDBC1.2 Package(867KB) JDBC2.0 Package(858KB) JDBC3.0 
Package(896KB) 

●     v3.0.047 optimizes memory occupation for UNION ALL.
●     v3.0.044 added CP850, CP852, CP866, CROATIAN, HEBREW, and SWEDISH sort for 

COLLATE function.
●     v3.0.024 supports timezone offset for timestamp type.
●     v3.0.014 optimizes speed for UNION.
●     v3.0.012 provides maxIdleTime connection property. maxIdleTime indicates the max idle 

time in minute for remote connection. That option is mainly used to avoid closing 
automatically idle remote connection for connection pool. Embedded idle connectoin won't 
be closed automatically except for garbage collection. You can use 1~1440 minutes. 
Default: 15. 

●     v3.0.004 can utilize an obsoleted invalid X type index file produced by Borland Database 

http://www.hxtt.com/paradox/history.html (1 / 3) [2008-6-27 12:01:50]



history.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Desktop without pack table in advance.
●     v3.0.003 fixed a bug when reindex X type index file, for instance,"reindex Prodemp.X03 

on prodemp;".

2006-08-07 Paradox v3.0 JDBC1.2 Package(950KB) JDBC2.0 Package(937KB) JDBC3.0 
Package(975KB) 

●     v2.3.036 supports Create Table from any java.io.InputStream object.
●     v2.3.020 supports PIVOT and UNPIVOT.
●     v2.3.015 provides CDATE(expression,pattern) for date conversion.
●     v2.3.011 fixed a bug in index query for IN operation.
●     v2.3.008 fixed a bug in index result cache.

2006-05-17 Paradox v2.3 JDBC1.2 Package(823KB) JDBC2.0 Package(815KB) JDBC3.0 
Package(854KB) 

●     v2.2.024 supports seamlessly url(http, ftp) database in jdbc url and sql.
●     v2.2.025 supports seamlessly memory-only database in jdbc url and sql for internal 

data processing, applets, or certain special applications.
●     v2.2.025 supports seamlessly files and directories in TAR and BZ2 file 

formats(.TAR, .BZ2, .TGZ, .TAR.GZ, .TAR.BZ2) in jdbc url and sql.
●     v2.2.015 provides TABLELOCKED(cTableName) function.
●     v2.2.001 provides lock table and unlock table sql.

2006-03-07 Paradox v2.2 JDBC1.2 Package(782KB) JDBC2.0 Package(798KB) JDBC3.0 
Package(828KB) 

●     v2.1.120 optimizes IN, NOT IN, ALL, and ANY on subquery.
●     v2.1.113 provides SSL connection and customer connection for client/server mode.
●     v2.1.109 supports seamlessly files and directories in ZIP and GZIP file 

formats(.ZIP, .JAR, .GZ) in jdbc url and sql.
●     v2.1.99 changed CREATE SCHEMA sql to CREATE CATALOG
●     v2.1.99 changed [schemas.]tableName@[catalog] format to [catalog.]tableName
●     v2.1.97 supports column numbers in ORDER BY clause
●     v2.1.96 supports Multiple-row VALUES tables.
●     v2.1.83 supports MySQL Migration Toolkit v1.0.21
●     v2.1.80 supports aggregate function first(x), last(expression).
●     v2.1.78 supports function ATN(x), CBOOL(expression), CBYTE(expression), 

CDBL(expression), CINT(expression), CLNG(expression), CSNG(expression), 
CSTR(expression), and CDATE(expression).

●     v2.1.44 supports Corel Paradox's encrypted database

2005-09-12 Paradox v2.1 JDBC1.2 Package(726KB) JDBC2.0 Package(741KB) JDBC3.0 

http://www.hxtt.com/paradox/history.html (2 / 3) [2008-6-27 12:01:50]



history.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1

Package(765KB) 

●     supports MySQL Migration Toolkit v1.0.20
●     supports MS Windows service and Linux Daemon for remote connection and 

remote control 
●     supports DISTINCTROW.
●     supports XA-Resources
●     provides ILIKE syntax support,ignore upper and case like 
●     provides $ token for checking whether left string is contained in right string.
●     provides transaction sql. 
●     provides user/password verification for client/server mode.

2005-01-01 Paradox V2.0 JDBC1.2 Package(634KB) JDBC2.0 Package(626KB) JDBC3.0 
Package(642KB) 

●     provides the quicker TCPServer to replace the slow RMIServer.
●     utilizes index for ORDER BY. 
●     supports CREATE SEQUENCE, DROP SEQUENCE, and ALTER SEQUENCE. 
●     provides Database GUI Manager. 

2004-10-28 Paradox 1.0 JDBC1.2 Package(358KB) JDBC2.0 Package(378KB) JDBC3.0 
Package(386KB) 

●     Development Documentation is available. 
●     supports JDBC3.0, JDBC2.0 and JDBC1.2.
●     provides collate function for multilingual sort. 
●     supports [reserved word]. 
●     provides MD5 function.
●     provides Table Encryption and ColumnLevel Encryption.
●     provides _LockFlag_ virtual column as row lock flag for Borland's dataset.
●     provides encrypt/decrypt function for Row-Column (Cell) Level Encryption.

Copyright © 2006 Hongxin Technology & Trade Ltd. | All Rights Reserved. | 

http://www.hxtt.com/paradox/history.html (3 / 3) [2008-6-27 12:01:50]


	hxtt.com
	index.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	start.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	sqlsyntax.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	introduction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	components.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	document.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	installation.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	statement.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	resultset.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	advanced.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	transaction.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	dbadmin.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x
	openapi.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	function.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	faq.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1
	history.html - HXTT Paradox JDBC Drivers for Paradox version from 3.0, 3.5, 4.x, 5.x, 7.x to 11.x v3.1


